
〈
: =
τ →

〉
Compiling Swift Generics

Slava Pestov

October 17, 2022

Preface

This is a book about the implementation of generic programming in Swift. While it is
primarily meant to be a reference for Swift compiler contributors, it should also be of
interest to other language designers, type system researchers, and even just curious Swift
programmers. Some familiarity with general compiler design and the Swift language is
assumed. A basic understanding of abstract algebra is also helpful.
This work began as a paper about the Requirement Machine, a new implementation of

the core algorithms in Swift generics which shipped with Swift 5.6. After making some
progress on writing the paper, I realized that a reference guide for the entire generics
implementation would be more broadly useful to the community. I worked backwards,
adding more preliminary material and revising subsequent sections until reaching a fixed
point, hopefully converging on something approximating a coherent and self-contained
treatment of this cross-section of the compiler.
Part I of this book outlines the basic building blocks. Each chapter in the first part

depends on the previous chapters; a determined (or stubborn) reader should be able to
work through them sequentially, however you might find it easier to skim some sections
and refer back later.
Part II details how various language features are built up from the core concepts of

generics. In the second part, each chapter is mostly independent of the others.
Part III dives into the Requirement Machine, which implements generic signature

queries and requirement minimization. This is the most technical part of the book.
Occasional historical asides explain when major features were introduced, citing the

relevant Swift evolution proposals. The bibliography lists all cited proposals. There is
also an automatically-generated index at the end; you might find it useful for looking
up unfamiliar terminology.
The Swift compiler is implemented in C++. To help separate essential from incidental

complexity, concepts are described without immediately referencing the source code.
Every chapter ends with a “Source Code Reference” section, structured somewhat like
an API reference, which translates what was previously explained into code. You can skip
this material if you’re not interested in the practicalities of the compiler implementation
itself. No knowledge of C++ is required outside of these sections.
This book was typeset with TEX. You can find the latest version in our git repository:

https://github.com/apple/swift/tree/main/docs/Generics

3

https://github.com/apple/swift/tree/main/docs/Generics

Contents

I. Nuts and Bolts 9

1. Introduction 11
1.1. Generic Functions . 12

1.2. Generic Types . 17

1.3. Protocols . 19

1.4. Language Comparison . 27

2. Compilation Model 29
2.1. Name Lookup . 33

2.2. Delayed Parsing . 36

2.3. Request Evaluator . 38

2.4. Incremental Builds . 43

2.5. Module System . 46

2.6. Source Code Reference . 48

3. Types 55
3.1. Structural Types . 58

3.2. Abstract Types . 61

3.3. Sugared Types . 65

3.4. Built-in Types . 65

3.5. Miscellaneous Types . 66

3.6. Source Code Reference . 68

4. Declarations 77
4.1. Type Declarations . 79

4.2. Function Declarations . 80

4.3. Storage Declarations . 82

4.4. Source Code Reference . 84

5. Generic Declarations 91
5.1. Constraint Types . 92

5.2. Requirements . 94

5.3. Opaque Parameters . 97

5

Contents

5.4. Protocol Declarations . 98
5.5. Source Code Reference . 101

6. Generic Signatures 107
6.1. Requirement Signatures . 109
6.2. Type Parameter Order . 112
6.3. Reduced Types . 116
6.4. Generic Signature Queries . 119
6.5. Source Code Reference . 123

7. Substitution Maps 129
7.1. Context Substitution Maps . 133
7.2. Composing Substitution Maps . 139
7.3. Building Substitution Maps . 143
7.4. Nested Nominal Types . 146
7.5. Source Code Reference . 149

8. Conformances 153
8.1. Conformance Lookup . 155
8.2. Conformance Substitution . 158
8.3. Type Witnesses . 161
8.4. Abstract Conformances . 165
8.5. Associated Conformances . 171
8.6. Source Code Reference . 175

9. Generic Environments 179
9.1. Primary Archetypes . 183
9.2. Source Code Reference . 186

II. Odds and Ends 189

10. Type Resolution 191
10.1. Identifier Type Representations . 191
10.2. Checking Generic Arguments . 191
10.3. Protocol Type Aliases . 191
10.4. Source Code Reference . 191

11. Building Generic Signatures 193
11.1. Requirement Inference . 193
11.2. Desugared Requirements . 193
11.3. Minimal Requirements . 193

6

Contents

11.4. Source Code Reference . 193

12. Extensions 195
12.1. Constrained Extensions . 195
12.2. Conditional Conformances . 195
12.3. Source Code Reference . 195

13. Conformance Paths 197
13.1. Recursive Conformances . 197

14. Opaque Return Types 199
14.1. Opaque Archetypes . 199
14.2. Referencing Opaque Archetypes . 199

15. Existential Types 201
15.1. Opened Existentials . 201
15.2. Self-Conforming Protocols . 201

16. Class Inheritance 203
16.1. Inherited Conformances . 203
16.2. Override Checking . 203

17. Witness Thunks 205

III. The Requirement Machine 207

18. Property Map 209

Bibliography 211

Index 215

7

Part I.

Nuts and Bolts

9

1. Introduction

Swift generics were designed with four primary goals in mind:

1. Generic definitions should be independently type checked, without knowledge of
all possible concrete type substitutions that they are invoked with.

2. Shared libraries that export generic definitions should be able to evolve resiliently
without requiring recompilation of clients.

3. Layouts of generic types should be determined by their concrete substitutions, with
fields of generic parameter type stored inline.

4. Abstraction over concrete types with generic parameters should only impose a
cost across module boundaries, or in other situations where type information is
not available at compile time.

The Swift compiler achieves these goals as follows:

1. The interface between a generic definition and its uses is mediated by generic
requirements. The generic requirements describe the behavior of the generic
parameter types inside the function body, and the generic arguments at the call
site are checked against the declaration’s generic requirements at compile time.

2. Generic functions receive runtime type metadata for each generic argument
from the caller. Type metadata defines operations to abstractly manipulate values
of their type without knowledge of their concrete layout.

3. Runtime type metadata is constructed for each type in the language. The runtime
type layout of a generic type is computed recursively from the type metadata of
the generic arguments. Generic types always store their contents without boxing
or indirection.

4. The optimizer can generate a specialization of a generic function in the case
where the definition is visible at the call site. This eliminates the overhead of
runtime type metadata and abstract value manipulation.

An important part of compiler implementation is the design of domain objects to
model concepts in the language being compiled. One way to think of a compiler is that

11

1. Introduction

it is a library for implementing the target language. A well-designed set of domain objects
facilitates the introduction of new language features that compose existing functionality
in new ways.
The generics implementation deals with four fundamental domain objects: generic

signatures, substitution maps, requirement signatures, and conformances. As you will
see, they are defined as much by their inherent structure, as their relationship with each
other. Subsequent chapters will dive into all the details, but first, we’re going to look at
a series of worked examples to help you understand the big picture.

1.1. Generic Functions

Consider these two rather contrived function declarations:

1 func identity(_ x: Int) -> Int { return x }

2 func identity(_ x: String) -> String { return x }

Apart from the parameter and return type, both have the same exact definition, and
indeed you can write the same function for any concrete type. Your aesthetic sense
might lead you to replace both with a single generic function:

1 func identity<T>(_ x: T) -> T { return x }

While this function declaration is trivial, it illustrates some important concepts and
allows us to introduce terminology. You’ll see a full description of the compilation
pipeline in the next chapter, but for now, let’s consider a simplified view where we begin
with parsing, then type checking, and finally code generation.

Parsing Figure 1.1 shows the abstract syntax tree produced by the parser before type
checking. The key elements:

1. The generic parameter list <T> introduces a single generic parameter declaration
named T. As its name suggests, this declares the generic parameter type T, scoped
to the entire source range of this function.

2. The type representation T appears twice, first in the the parameter declaration
_ x: T and then as return type of identity(_:). A type representation is the
purely syntactic form of a type. The parser does not perform name lookup, so
the type representation stores the identifier T and does not refer to the generic
parameter declaration of T in any way.

3. The function body contains an expression referencing x. Again, the parser does
not perform name lookup, so this is just the identifier x and is not associated with
the parameter declaration _ x: T.

12

1.1. Generic Functions

Figure 1.1.: The abstract syntax tree for identity(:)

function declaration: identity

generic parameter list: <T>

generic parameter declaration: T

parameter declaration: x: T

type representation: T

type representation: T

body

statement: return x

expression: x

Type checking Some additional structure is formed during type checking:

1. The generic parameter declaration T declares the generic parameter type T. Types
are distinct from type declarations in Swift; some types denote a reference a type
declaration, and some are structural (such as function types or tuple types).

2. The type checker constructs a generic signature for our function declaration. The
generic signature has the printed representation <T> and contains the single generic
parameter type T. This is the simplest possible generic signature, apart from the
empty generic signature of a non-generic declaration.

3. The type checker performs type resolution to transform the type representation
T appearing in our parameter declaration and return type into a semantic type.
Type resolution queries name lookup for the identifier T at the source location of
each type representation, which finds the generic parameter declaration T in both
cases. This type declaration declares the generic parameter type T, which becomes
the resolved type.

4. There is now enough information to form the function’s interface type, which is
the type of a reference to this function from expression context. The interface
type of a generic function declaration is a generic function type, composed from
the function’s generic signature, parameter types, and return type:

<T> (T) -> T

The final step is the type checking of the function’s body. The expression type checker
queries name lookup for the identifier x, which finds the parameter declaration _ x: T.

13

1. Introduction

While the type of our function parameter is the generic parameter type T, inside the
body of a generic function it becomes a different kind of type, called a primary archetype.
The distinction isn’t terribly important right now, and it will be covered in Chapter 9.
It suffices to say that we’ll use the notation [[T]] for the primary archetype corresponding
to the generic parameter type T.

With that out of the way, the expression type checker assigns the type [[T]] to the
expression x appearing in the return statement. As expected, this matches the declared
return type of the function.

Code generation We’ve now successfully type checked our function declaration. How
might we generate code for it? Recall the two concrete implementations that we folded
into our single generic function:

1 func identity(_ x: Int) -> Int { return x }

2 func identity(_ x: String) -> String { return x }

The calling conventions of these functions differ significantly:

1. The first function receives and returns the Int value in a machine register. The
Int type is trivial,1 meaning it can be copied and moved at will.

2. The second function is trickier. A String is stored as a 16-byte value in memory,
and contains a pointer to a reference-counted buffer. When manipulating values
of a non-trivial type like String, memory ownership comes into play.

The standard ownership semantics for a Swift function call are defined such that
the caller retains ownership over the parameter values passed into the callee, while
the callee transfers ownership of the return value to the caller. This means that
the identity(_:) function cannot just return the value x; instead, it must first
create a logical copy of x that it owns, and then return this owned copy. This is
achieved by incrementing the string value’s buffer reference count via a call to a
runtime function.

More generally, every Swift type has a size and alignment, and defines three fundamental
operations that can be performed on all values of that type: moving the value, copying
the value, and destroying the value. A move is semantically equivalent to, but more
efficient than, copying a value followed by destroying the old copy.2

With a trivial type, moving or copying a value simply copies the value’s bytes from
one memory location to another, and destroying a value does nothing. With a reference

1Or POD, for you C++ folks.
2Of course if move-only types are ever introduced into the language, this will no longer be so; a new
kind of value will exist which cannot be copied.

14

1.1. Generic Functions

type, these operations update the reference count. Copying a reference increments the
reference count on its heap-allocated backing storage, and destroying a reference decre-
ments the reference count, deallocating the backing storage when the reference count
reaches zero. Even more complex behaviors are also possible; a struct might contain a
mix of trivial types and references, for example. Weak references and existential types
also have non-trivial value operations.
As the joke goes, every problem in computer science can be solved with an extra

level of indirection. The calling convention for a generic function takes runtime type
metadata for every generic parameter in the function’s generic signature. Every type in
the language has a reified representation as runtime type metadata, storing the type’s
size and alignment together with function pointers implementing the move, copy and
destroy operations. The generated code for a generic function abstractly manipulates
values of generic parameter type using the runtime type metadata provided by the caller.
An important property of runtime type metadata is identity ; two pointers to runtime
type metadata are equal if and only if they represent the same type in the language.

More details

• Types: Chapter 3

• Function declarations: Section 4.2

• Generic parameter lists: Chapter 5

• Type resolution: Chapter 10

Substitution maps Let us now turn our attention to the callers of generic functions.
A call expression references a callee together with a list of arguments. The callee is
some other expression with a function type. Some possible callees include references to
named function declarations, type expressions (which invokes a constructor), function
parameters and local variables of function type, and results of other calls which return
functions. In our example, we might call the identity(_:) function as follows:

1 identity(3)

2 identity("Hello, Swift")

The callee here is a direct reference to the declaration of identity(_:). In Swift, calls
to generic functions never specify their generic arguments explicitly; instead, the type
checker infers them from the types of call argument expressions. A reference to a named
generic function stores a substitution map mapping each generic parameter type of the
callee’s generic signature to the inferred generic argument, also called the replacement
type.

15

1. Introduction

The generic signature of identity(_:) has a single generic parameter type. The two
references to identity(_:) have different substitution maps; the first substitution map
has the replacement type Int, and the second String. We will use the following notation
for these substitution maps:

Types

T := Int

Types

T := String

We can apply a substitution map to the interface type of our function declaration to get
the substituted type of the callee:

<T> (T) -> T × Types

T := Int
= (Int) -> Int

Substitution maps also play a role in code generation. When generating a call to a
generic function, the compiler emits code to realize the runtime type metadata for each
replacement type in the substitution map. The types Int and String are nominal types
defined in the standard library. These types are non-generic and have a fixed layout,
so their runtime type metadata can be recovered by taking the address of a constant
symbol exported by the standard library.
Structural types are slightly more complicated. Suppose we were instead compiling

a call to identity(_:) where the replacement type for T was some function type, say
(Int, String) -> Float. Function types can have arbitrary parameter and return
types. Therefore, structural type metadata is instantiated by calling one of several
metadata access functions, declared in the runtime. These runtime entry points take
metadata for the parameter types and return type, construct metadata representing the
function type, and cache the result for future accesses.

More details

• Substitution maps: Chapter 7

Specialization The passing of runtime type metadata and the resulting indirect ma-
nipulation of values incurs a performance penalty. As an alternative, if the definition of
a generic function is visible at the call site, the optimizer can generate a specialization of
the generic function by cloning the definition and applying the substitution map to all
types appearing in the function’s body. Definitions of generic functions are always visible
to the specializer within their defining module. Shared library developers can also opt-
in to exporting the body of a function across module boundaries with the @inlinable

attribute.

16

1.2. Generic Types

More details

• @inlinable attribute: Section 2.5

1.2. Generic Types

For our next example, consider this simple generic struct storing two values of the same
type:

1 struct Pair<T> {

2 let first: T

3 let second: T

4

5 init(first: T, second: T) {

6 self.first = first

7 self.second = second

8 }

9 }

This struct declaration contains three members: two stored property declarations, and
a constructor declaration. Recall that declarations have an interface type, which is the
type of a reference to the declaration from expression context. The interface type of
first and second is the generic parameter type T.

When a type declaration is referenced from expression context the result is a value
representing the type, and the type of this value is a metatype type, so the interface
type of Pair is the metatype type Pair<T>.Type.

Type declarations also have a more primitive notion of a declared interface type, which
is the type assigned to a reference to the declaration from type context. The declared
interface type of Pair is the generic nominal type Pair<T>. The interface type of a type
declaration is the metatype of its declared interface type.

Instances of Pair store their fields inline without boxing, and the layout of Pair

depends on the generic parameter T. If you declare a local variable whose type is the
generic nominal type Pair<Int>, the compiler can directly compute the type’s layout to
determine the size of the stack allocation:

1 let twoIntegers: Pair<Int> = ...

To compute the layout, the compiler first factors the type Pair<Int> into the application
of a substitution map to the declared interface type:

Pair<Int> = Pair<T> × Types

T := Int

17

1. Introduction

The compiler then computes the substituted type of each stored property by applying
this substitution map to each stored property’s interface type:

T × Types

T := Int
= Int

Therefore both fields of Pair<Int> have a substituted type of Int. The Int type has a
size of 8 bytes and an alignment of 8 bytes, from which we derive that Pair<Int> has a
size of 16 bytes and alignment of 8 bytes.
However, the layout is not always known at compile time, in which case we need

the runtime type metadata for Pair<T>. When compiling the declaration of Pair, the
compiler emits a metadata access function which takes the type metadata for T as an
argument. The metadata access function calculates the layout of Pair<T> for this T

with the same algorithm as the compiler, but at runtime, and caches the result.
Note that the runtime type metadata for Pair<Int> has two parts:

1. A common prefix present in all runtime type metadata, which includes the total
size and alignment of a value.

2. A private area specific to the declaration of Pair<T>, such as the field offset vector
storing the starting offset of each field within a value.

The first part comes into play if we call our identity(_:) function with a value of
type Pair<Int>. The generated code for the call invokes a metadata access function for
Pair<T> with the metadata for Int as an argument, and passes the resulting metadata
for Pair<Int> to identity(_:). The implementation of identity(_:) doesn’t know
that it is dealing with a Pair<Int>, but it uses the provided metadata to abstractly
manipulate the value.
The second part is used by the constructor implementation. The constructor does

not have a generic parameter list of its own, but it is nested inside of a generic type,
so it inherits the generic signature of the type, which is <T>. The interface type of this
constructor is the generic function type:

<T> (T, T) -> Pair<T>

Recall our declaration of the twoIntegers variable. Let’s complete the declaration by
writing down an initial value expression which calls the constructor:

1 let twoIntegers: Pair<Int> = Pair(first: 1, second: 2)

At the call site, we have full knowledge of the layout of twoIntegers. However, the
implementation of Pair.init only knows that it is working with a Pair<T>, and not a
Pair<Int>. The generated code for the constructor calls the metadata access function

18

1.3. Protocols

for Pair<T> with the provided metadata for T. Since it knows it is working with a
Pair<T>, it can look inside the private area to get the field offset of first and second,
and assign the two parameters into the first and second stored properties of self.

More details

• Type declarations: Section 4.1

• Context substitution map: Section 7.1

1.3. Protocols

Our identity(_:) function and the Pair type did not state any generic requirements,
so they couldn’t do much with their generic values except pass them around, which
the compiler expresses in terms of the fundamental value operations—move, copy and
destroy.

We can do more interesting things with our generic parameter types by writing down
generic requirements. The most important kind is the protocol conformance requirement,
which states that the replacement type for a generic requirement must conform to the
given protocol.

1 protocol Shape {

2 func draw()

3 }

4

5 func drawShapes<S: Shape>(_ shapes: [S]) {

6 for shape in shapes {

7 shape.draw()

8 }

9 }

The drawShapes(_:) function takes an array of values whose type conforms to Shape.
You can also write the declaration of drawShapes(_:) using a trailing where clause, or
avoid the explicit generic parameter list altogether and declare an opaque parameter type
instead:

1 func drawShapes<S>(_ shapes: [S]) where S: Shape

2 func drawShapes(_ shapes: [some Shape])

The generic signatures we’ve seen previously were rather trivial, only storing a single
generic parameter type. More generally, a generic signature actually consists of a list of

19

1. Introduction

generic parameter types together with a list of requirements. Irrespective of the surface
syntax, the generic signature of drawShape(_:) will have a single requirement. We will
use the following notation for generic signatures with requirements:

<S where S: Shape>

The interface type of drawShapes(_:) is a generic function type incorporating this
generic signature:

<S where S: Shape> (S) -> ()

Inside the body of drawShapes(_:), the shape local variable bound by the for loop
is a value of type [[S]] (remember, generic parameter types become archetype types inside
the function body; but as before, the distinction doesn’t matter right now). Since S is
subject to the conformance requirement S: Shape, we can call the draw() method of
the Shape protocol on shape. More precisely, a qualified lookup of the identifier draw

with a base type of [[S]] will find the draw() method of Shape as a consequence of the
conformance requirement.

How does the compiler generate code for the call shape.draw()? Once again, we
need to introduce some indirection. For each conformance requirement in the generic
signature of a generic function, the generic function receives a witness table from the
caller. The layout of a witness table is determined by the protocol’s requirements; a
method becomes an entry storing a function pointer. To call our protocol method,
the compiler loads the function pointer from the witness table, and invokes it with the
argument value of shape.

Note that drawShapes(_:) operates on a homogeneous array of shapes. While the
array contains an arbitrary number of elements, drawShapes(_:) only receives a single
runtime type metadata for S, and one witness table for the conformance requirement
S: Shape, which together describe all elements of the array.

More details

• Protocols: Section 5.4

• Constraint types: Section 5.1

• Trailing where clauses: Section 5.2

• Opaque parameters: Section 5.3

• Name lookup: Section 2.1

20

1.3. Protocols

Conformances We can write a struct declaration conforming to Shape:

1 struct Circle: Shape {

2 let radius: Double

3 func draw() {...}

4 }

The declaration of Circle states a conformance to the Shape protocol in its inheritance
clause. The type checker constructs an object called a normal conformance, which
records the mapping from the protocol’s requirements to the members of the conforming
type which witness those requirements.
When the compiler generates the code for the declaration of Circle, it emits a witness

table for each normal conformance defined on the type declaration. In our case, there is
just a single requirement Shape.draw(), witnessed by the method Circle.draw(). The
witness table for this conformance references the witness (indirectly, because the witness
is always wrapped in a thunk, which is a small function which shuffles some registers
around and then calls the actual witness. This must be the case because protocol
requirements use a slightly different calling convention than ordinary generic functions).
Now, let’s look at a call to drawShape(_:) with an array of circles:

1 drawShapes([Circle(radius: 1), Circle(radius: 2)])

Recall that a reference to a generic function declaration comes with a substitution map.
Substitution maps store a replacement type for each generic parameter of a generic
signature, so our substitution map maps S to the replacement type Circle. When
the generic signature has conformance requirements, the substitution map also stores a
conformance for each conformance requirement. This is the “proof” that the concrete
replacement type actually conforms to the protocol.
The type checker finds conformances by global conformance lookup. The call to

drawShape(_:) will only type check if the replacement type conforms to Shape; the
type checker rejects a call that provides an array of integers for example, because there
is no conformance of Int to Shape.3

We will use the following notation for substitution maps storing a conformance:

Types

S := Circle

Conformances

Circle: Shape

When emitting code to call to a generic function, the compiler looks at the substitution
map and emits a reference to runtime type metadata for each replacement type, and a

3Of course, you could define this conformance with an extension.

21

1. Introduction

reference to the witness table for each conformance. In our case, drawShapes(_:) takes
a single runtime type metadata and a single witness table for the conformance. (The
contents of the witness table were emitted when compiling the declaration of Circle;
compiling the substitution map references this existing witness table.)

More details

• Conformances: Chapter 8

• Conformance lookup: Section 8.1

Associated types Perhaps the simplest example of a protocol with an associated type
is the Iterator protocol in the standard library. This protocol abstracts over an iterator
which produces elements of a type that depends on the conformance:

1 protocol IteratorProtocol {

2 associatedtype Element

3 mutating func next() -> Element?

4 }

Consider a generic function which returns the first element produced by an iterator:

1 func firstElement<I: IteratorProtocol>(_ iter: inout I) -> I.Element {

2 return iter.next()!

3 }

The return type of our function is the identifier type representation I.Element with two
components, “I” and “Element”. Type resolution resolves this type representation to
a type by performing a qualified lookup of Element on the base type I. The generic
parameter type I is subject to a conformance requirement, and qualified lookup finds
the associated type declaration Element.

The resolved type is a dependent member type composed from the generic parameter
type I and associated type declaration Element. We will denote this dependent member
type as I.[IteratorProtocol]Element to make explicit the fact that a name lookup
has resolved the identifier Element to an associated type.

The interface type of firstElement(_:) is therefore this generic function type:

<I where I: IteratorProtocol>

(inout I) -> I.[IteratorProtocol]Element

22

1.3. Protocols

More details

• Identifier type representations: Section 10.1

Type parameters A type parameter in some fixed generic signature is either a generic
parameter type, or a dependent member type whose base type conforms to the protocol
of this associated type. The generic signature of firstElement(_:) has two valid type
parameters:

I

I.[IteratorProtocol]Element

As with generic parameter types, dependent member types become primary archetypes
in the body of a generic function; we can reveal a little more about the structure of
primary archetypes now, and say that a primary archetype packages a type parameter
together with a generic signature.
Inside the body of firstElement(_:), the result of the call expression iter.next()!

is the optional type [[I.Element]]?, which is force-unwrapped to yield the archetype type
[[I.Element]]. To manipulate a value of the element type abstractly, the compiler must
be able to recover its runtime type metadata.
While metadata for generic parameters is passed in directly, for dependent member

types the metadata is recovered from one or more witness tables provided by the caller.
A witness table for a conformance to IteratorProtocol stores two entries, one for each
of the protocol’s requirements:

• A metadata access function to witness the Element associated type.

• A function pointer to witness the next() protocol requirement.

Type witnesses When a concrete type conforms to a protocol, the normal conformance
stores a type witness for each of the protocol’s associated types; this information is
populated by the type checker during conformance checking.
Listing 1.1 shows a type that conforms to IteratorProtocol by producing an infinite

stream of incrementing integers. Here, the associated type Element is witnessed by a
type alias declaration with an underlying type of Int. This matches the return type
of NaturalNumbers.next(). Indeed, we can omit the type alias entirely in this case,
and instead rely on associated type inference to derive it from the interface type of the
witness.
Suppose we call firstElement(_:) with a value of type NaturalNumbers:

1 var iter = NaturalNumbers()

2 print(firstElement(&iter))

23

1. Introduction

Listing 1.1.: Iterator producing the natural numbers

1 struct NaturalNumbers: IteratorProtocol {

2 typealias Element = Int

3 var x = 0

4

5 mutating func next() -> Int? {

6 defer { x += 1 }

7 return x

8 }

9 }

The substitution map for the call stores the replacement type NaturalNumbers and the
conformance of NaturalNumbers to IteratorProtocol:

Types

I := NaturalNumbers

Conformances

NaturalNumbers: IteratorProtocol

To compute the substituted type of the call, we apply our substitution map to the
interface type of firstElement(_:). Substitution transforms the parameter type I to
the replacement type NaturalNumbers.

To compute the substituted return type for I.[IteratorProtocol]Element, we can
look up the type witness in the conformance stored in the substitution map. This is
entirely analogous to how the generated code for our function is able to recover the
runtime type metadata for this dependent member type from a witness table at run
time.

The normal conformance of NaturalNumbers: IteratorProtocol can be found in
the substitution map, and it stores the type witness for Element, which is Int. The
substituted return type is Int, and the substituted function type for the call is therefore:

(inout NaturalNumbers) -> Int

More details

• Type witnesses: Section 8.3

• Dependent member type substitution: Section 8.4

24

1.3. Protocols

Associated conformances Protocols can also impose requirements on their associated
types. The Sequence protocol in the standard library is one such example:

1 protocol Sequence {

2 associatedtype Element

3 associatedtype Iterator: IteratorProtocol

4 where Element == Iterator.Element

5

6 func makeIterator() -> Iterator

7 }

There are two requirements here:

1. The conformance requirement Iterator: IteratorProtocol, which is written as
a constraint type in the inheritance clause of the Iterator associated type.

2. The same-type requirement Element == Iterator.Element, written in a trailing
where clause.

Requirements on the generic parameters of a generic function or generic type are collected
in the declaration’s generic signature. A protocol analogously has a requirement signature
which collects the requirements imposed on its associated types. A protocol always
declares a single generic parameter named Self, and our notation for a requirement
signature looks like a generic signature over the protocol Self type:

<Self where Self.[Sequence]Element ==

Self.[Sequence]Iterator.[IteratorProtocol]Element,

Self.[Sequence]Iterator: IteratorProtocol>

The conformance requirement Self.[Sequence]Iterator: IteratorProtocol is an
associated conformance requirement, and associated conformance requirements appear
in protocol witness tables. Therefore a witness table for a conformance to Sequence has
four entries:

1. A metadata access function to witness the Element associated type.

2. A metadata access function to witness the Iterator associated type.

3. A witness table access function to witness the associated conformance requirement
Iterator: IteratorProtocol.

4. A function pointer to the witness the makeIterator() protocol requirement.

25

1. Introduction

Abstract conformances Let’s define a firstElementSeq(_:) function which operates
on a sequence.4 We can call the makeIterator() protocol requirement to create an
iterator for our sequence, and then hand off this iterator to the firstElement(_:)

function we defined previously:

1 func firstElementSeq<S: Sequence>(_ sequence: S) -> S.Element {

2 var iter = sequence.makeIterator()

3 return firstElement(&iter)

4 }

The substitution map for the call to firstElement(_:) is interesting. The argument
iter has the type [[S.Element]], which becomes the replacement type for the generic
parameter I of firstElement(_:). Recall that this substitution map also needs to
store a conformance. Since the conforming type is an archetype and not a concrete type,
global conformance lookup returns an abstract conformance. So our substitution map
looks like this:

Types

I := [[S.Iterator]]

Conformances

[[S.Iterator]]: IteratorProtocol

When generating code for the call, we need to emit runtime type metadata for I as
well as a witness table for I: IteratorProtocol. Both of these are recovered from
the witness table for the conformance S: Sequence that was passed by the caller of
firstElementSeq(_:):

1. The replacement type for I is [[S.Iterator]]. Runtime type metadata for this type
is recovered by calling the metadata access function for the Iterator associated
type stored in the S: Sequence witness table.

2. The conformance for I: Iterator is an abstract conformance. We know the type
[[S.Iterator]] conforms to IteratorProtocol because the Sequence protocol says
that it does. Therefore, the witness table for this conformance is recovered by
calling the witness table access function for the Iterator: IteratorProtocol

associated conformance in our S: Sequence witness table.

Recall that the shape of the substitution map is determined by the generic signature
of the callee. In our earlier examples, the replacement types and conformances were fully
concrete, which allowed us to emit runtime type metadata and witness tables for a call
by referencing global symbols.

4We could give both functions the same name and take advantage of function overloading, but for
clarity we’re not going to do that.

26

1.4. Language Comparison

More generally, the replacement types and conformances are defined in terms of the
type parameters of the caller’s generic signature. This makes sense, because we start
with the runtime type metadata and witness tables received by the caller, from which
we recover the runtime metadata and witness tables required by the callee. Here, the
caller is firstElementSeq(_:) and the callee is firstElement(_:).

1.4. Language Comparison

Swift generics occupy a unique point in the design space, which avoids some of the
tradeoffs inherent in the design of other popular languages:

• C++ templates do not allow for separate compilation and type checking. When a
template declaration is compiled, only minimal semantic checks are performed and
no code is actually generated. The body of a template declaration must be visible
at each expansion point, and full semantic checks are performed after template
expansion. There is no formal notion of requirements on template parameters; at
a given expansion point, template expansion either succeeds or fails depending on
how the substituted template parameters are used in the body of the template.

• Rust generics are separately type checked with the use of generic requirements.
Unlike C++, specialization is not part of the semantic model of the language,
but it is mandated by the implementation because Rust does not define a calling
convention for unspecialized generic code. After type checking, the compiler com-
pletely specializes all usages of generic definitions for every set of provided generic
arguments.

• Java generics are separately type checked and compiled. Only reference types can
be used as generic arguments; primitive value types must be boxed on the heap.
The implementation strategy uses a uniform runtime layout for all generic types,
and generic argument types are not reified at runtime. This avoids the complexity
of generic type layout at the virtual machine level, but it comes at the cost of
runtime type checks and heap allocation.

We can summarize this with a table.

C++ Rust Java Swift

Separate compilation × × ✓ ✓
Specialization ✓ ✓ × ✓
Generic requirements × ✓ ✓ ✓
Unboxed values ✓ ✓ × ✓

27

2. Compilation Model

Most developers interact with the Swift compiler through Xcode and the Swift package
manager, but for simplicity let’s just consider direct invocation of swiftc from the
command line. You can invoke swiftc, passing a list of all source files in your module
as command line arguments:

1 $ swiftc m.swift v.swift c.swift

The swiftc command runs the Swift driver. By default, the driver emits an executable.
When building frameworks (or libraries, if you’re not versed in Apple jargon), the driver
is invoked with the -emit-library and -emit-module flags, which generate a shared
library and binary module file instead. Binary modules are consumed by the compiler
when importing the framework, and are discussed in Section 2.5.

Executables must define a main function, which is the entry point invoked when the
executable is run. There are three mechanisms for doing so:

1. If the module consists of a single source file, or if there are multiple source files and
one of them is named main.swift, then this file becomes the main source file of
the module. The main source file can contain statements at the top level, outside of
a function body; consecutive top-level statements are collected into top-level code
declarations. The main function executes the statements of each top-level code
declaration in order. Source files other than the main source file cannot contain
top-level code declarations.

2. If a struct, enum or class declaration is annotated with the @main attribute, the
declaration must contain a static method named main(); this method becomes the
main entry point. This attribute was introduced in Swift 5.3 [1].

3. The @NSApplicationMain and @UIApplicationMain attributes are an older way
to specify the main entry point on Apple platforms. When applied to a class
adopting the NSApplicationMain or UIApplicationMain protocol, a main entry
point is generated which calls the NSApplicationMain() or UIApplicationMain()
system framework function.

The Swift driver schedules frontend jobs to perform the actual compilation work. Each
frontend job runs the Swift frontend process, which is what compiler developers think

29

2. Compilation Model

of as “the compiler.” Multiple frontend jobs can run in parallel, leveraging multi-core
concurrency. By default, the number of concurrent frontend jobs is determined by the
number of CPU cores; this can be overridden with the -j driver flag. If there are more
frontend jobs than can be run simultaneously, the driver queues them and kicks them
off as other frontend jobs complete.

Source files are divided among frontend jobs according to the compilation mode:

1. In batch mode, the list of source files is partitioned into fixed-size batches, up to
the maximum batch size. Each frontend job compiles the source files of a single
batch. This is the default.

2. In single file mode, there is frontend job per source file, which is effectively the same
as batch mode with a maximum batch size of one. Single file mode is only used for
debugging and performance testing the compiler itself. The -disable-batch-mode
command line flag instructs the driver to run in single file mode.

3. In whole module optimization mode, there is no parallelism; a single frontend job is
scheduled to build all source files. This trades build time for quality of generated
code, because the compiler is able to perform more aggressive optimization across
source file boundaries. The -wmo driver flag enables whole module optimization.

The Swift frontend itself is single-threaded, therefore a source file is the minimum unit
of parallelism.

In batch mode and single file mode, the driver can also perform an incremental build
by re-using the result of previous compilations, providing an additional compile-time
speedup. Incremental builds are described in Section 2.3.

The driver invokes the frontend with a list of primary files and secondary files. The
primary files are those that this specific frontend job is tasked with building, and the
secondary files are the remaining source files in the module. Each source file is a primary
file of exactly one frontend job, and each frontend job’s primary files and secondary files
together form the full list of source files in the module.

The -### flag driver flags performs a “dry run” which prints all commands to run
without actually doing anything.

1 $ swiftc m.swift v.swift c.swift -###

2 swift-frontend -frontend -c -primary-file m.swift v.swift c.swift ...

3 swift-frontend -frontend -c m.swift -primary-file v.swift c.swift ...

4 swift-frontend -frontend -c m.swift v.swift -primary-file c.swift ...

5 ld m.o v.o c.o -o main

In the above, we’re performing a batch mode build, but the module only has three source
files, so for maximum parallelism each batch consists of a single source file. Therefore,

30

Figure 2.1.: The compilation pipeline

Parse

Sema

SILGen

SILOptimizer

IRGen

LLVM

each frontend job has a single primary file, with the other two source files becoming the
secondary files for the job. The final command is the linker invocation, which combines
the output of each frontend job into our binary executable.

The frontend implements a classic multi-stage compiler pipeline, shown in Figure 2.1:

• Parse: First, all source files are parsed into an abstract syntax tree.

• Sema: Semantic analysis type-checks and validates the abstract syntax tree.

• SILGen: The type-checked syntax tree is lowered to raw SIL.

• SILOptimizer: The raw SIL is transformed into canonical SIL by a series of
mandatory passes, which analyze the control flow graph and emit diagnostics; for
example, definite initialization ensures that all storage locations are initialized.

When the -O command line flag is specified, the canonical SIL is further optimized
by a series of performance passes with the goal of improving run-time performance
and reducing code size.

• IRGen: The optimized SIL is then transformed into LLVM IR.

• LLVM: Finally, the LLVM IR is handed off to LLVM, which performs various
lower level optimizations before generating machine code.

31

2. Compilation Model

Each pipeline phase can emit warnings and errors. The parser attempts to recover from
errors; the presence of parse errors does not prevent Sema from running. On the other
hand, if Sema emits errors, compilation stops; SILGen does not attempt to lower an
invalid abstract syntax tree to SIL.

The pipeline will be slightly different depending on what the driver and frontend were
asked to produce. When the frontend is instructed to emit a binary module file only,
and not an object file, compilation stops after the SIL optimizer. When generating a
textual interface file or TBD file, compilation stops after Sema. (Textual interfaces are
discussed in Section 2.5. A TBD file is a list of symbols in a shared library, which can
be consumed by the linker and is faster to generate than the shared library itself; we’re
not going to talk about them here.)

Various command-line flags print the output of each phase to the terminal (or some
other file in conjunction with the -o flag), useful for debugging the compiler:

• -dump-parse prints the parsed syntax tree as an s-expression.1

• -dump-ast prints the type-checked syntax tree as an s-expression.

• -print-ast prints the type-checked syntax tree in a form that approximates what
was written in source code. This is useful for getting a sense of what declarations
the compiler synthesized, for example for derived conformances to protocols like
Equatable.

• -emit-silgen prints the raw SIL output by SILGen.

• -emit-sil prints the canonical SIL output by the SIL optimizer. To see the output
of the performance pipeline, also pass -O.

• -emit-ir prints the LLVM IR output by IRGen.

• -S prints the assembly output by LLVM.

Some command-line flags, such as those listed above, are understood by both the driver
and the frontend. Certain other flags used for compiler development and debugging and
only known to the frontend.

If the driver is invoked with the -frontend flag as the first command line flag, then
instead of scheduling frontend jobs, the driver spawns a single frontend job, passing it
the rest of the command line without further processing:

1 $ swiftc -frontend -typecheck -primary-file a.swift b.swift

1The term comes from Lisp. An s-expression represents a tree structure as nested parenthesized lists;
e.g. (a (b c) d) is a node with three children a, (b c) and d, and (b c) has two children b and c.

32

2.1. Name Lookup

Another mechanism for passing flags to the frontend is the -Xfrontend flag. When this
flag appears in a command-line invocation of the driver, the command line argument
that comes immediately after is passed to the frontend:

1 $ swiftc a.swift b.swift -Xfrontend -dump-requirement-machine

The SIL intermediate form is described in [2].

2.1. Name Lookup

Name lookup is the process of resolving identifiers to declarations. The Swift compiler
does not have a distinct “name binding” phase; instead, name lookup is queried from
various points in the compilation process. Broadly speaking, there are two kinds of name
lookup: unqualified lookup and qualified lookup. An unqualified lookup resolves a single
identifier foo, while qualified lookup resolves an identifier bar relative to a base, such
as foo.bar. There are also three important variations which are described immediately
after the two fundamental kinds.

Unqualified lookup An unqualified lookup is always performed relative to the source
location where the identifier actually appears. The source location may be inside of a
primary file or secondary file.

The first time an unqualified lookup is performed inside a source file, a scope tree
is constructed by walking the source file’s abstract syntax tree. The root scope is the
source file itself. Each scope has an associated source range, and zero or more child
scopes; each child scope’s source range must be a subrange of the source range of its
parent, and the source ranges of sibling scopes are disjoint. Each scope introduces zero
or more variable bindings.

Unqualified lookup first finds the innermost scope containing the source location, and
proceeds to walk the scope tree up to the root, searching each parent node for bindings
named by the given identifier. If the lookup reaches the root node, a top-level lookup is
performed next. This will look for top-level declarations named by the given identifier,
first in all source files of the current module, followed by all imported modules.

Qualified lookup A qualified lookup looks inside a list of type declarations for members
with a given name. Starting from an initial list of type declarations, qualified lookup
also visits the superclass of a class declaration, and conformed protocols.

The more primitive operation performed at each step is called a direct lookup, which
searches inside a single type declaration and its extensions only, by consulting the type
declaration’s lookup table.

33

2. Compilation Model

Module lookup A qualified lookup where the base is a module declaration searches for
a top-level declaration in the given module and any other modules that it re-exports via
@ exported import.

Dynamic lookup A qualified lookup where the base is the AnyObject type implements
the legacy Objective-C behavior of a message send to id, which can invoke any method
defined in any Objective-C class or protocol. In Swift, a dynamic lookup searches a
global lookup table constructed from all @objc members of all classes and protocols.
Any class can contain @objc members; the attribute can either be explicitly stated, or
inferred if the method overrides an @objcmethod from the superclass. Protocol members
are @objc only if the protocol itself is @objc.

Operator lookup Operator symbols are declared at the top level of a module. Operator
symbols have a fixity (prefix, infix, or postfix), and infix operators also have a precedence
group. Precedence groups are partially ordered with respect to other precedence groups.
Standard operators like + and * and their precedence groups are thus defined in the
standard library, rather than being built-in to the language itself.

An arithmetic expression like 2 + 3 * 6 is parsed as a sequence expression, which is
a flat list of nodes and operator symbols. The parser does not know the precedence,
fixity or associativity of the + and * operators. Indeed, it does not know that they exist
at all. The pre-check phase of the expression type checker looks up operator symbols
and transforms sequence expressions into the more familiar nested tree form.

Operator symbols do not themselves have an implementation; they are just names.
An operator symbol can used as the name of a function implementing the operator on
a specific type (for prefix and postfix operators) or a specific pair of types (for infix
operators). Operator functions can be declared either at the top level, or as a member
of a type. As far as a name lookup is concerned, the interesting thing about operator
functions is that they are visible globally, even when declared inside of a type. Operator
functions are found by consulting the operator lookup table, which contains top-level
operator functions as well as member operator functions of all declared types.

When the compiler type checks the expression 2 + 3 * 6, it must pick two specific
operator functions for + and * among all the possibilities in order to make this expression
type check. In this case, the overloads for Int are chosen, because Int is the default
literal type for the literals 2, 3 and 6.

Listing 2.1 shows the definition of some custom operators and precedence groups.
Note that the overload of ++ inside struct Chicken returns Int, and the overload of ++
inside struct Sausage returns Bool. The closure value stored in fn applies ++ to two
anonymous closure parameters, $0 and $1. While they do not have declared types, by
simply coercing the return type to Bool, we are able to unambiguously pick the overload
of ++ declared in Sausage. (Whether this is good style is an exercise for the reader.)

34

2.1. Name Lookup

Listing 2.1.: Operator lookup in action

1 prefix operator <&>

2 infix operator ++: MyPrecedence

3 infix operator **: MyPrecedence

4

5 precedencegroup MyPrecedence {

6 associativity: right

7 higherThan: AdditionPrecedence

8 }

9

10 // Member operator examples

11 struct Chicken {

12 static prefix func <&>(x: Chicken) {}

13 static func ++(lhs: Chicken, rhs: Chicken) -> Int {}

14 }

15

16 struct Sausage {

17 static func ++(lhs: Sausage, rhs: Sausage) -> Bool {}

18 }

19

20 // Top-level operator example

21 func **(lhs: Sausage, rhs: Sausage) -> Sausage {}

22

23 // Global operator lookup finds Sausage.++

24 // ‘fn’ has type (Sausage, Sausage) -> Bool

25 let fn = { ($0 ++ $1) as Bool }

35

2. Compilation Model

Initially, infix operators defined their precedence as an integer value; Swift 3 introduced
named precedence groups [3]. The global lookup for operator functions dates back to
when all operator functions were declared at the top level. Swift 3 also introduced the
ability to declare operator functions as members of types, but the global lookup behavior
was retained [4].

2.2. Delayed Parsing

The above “compilation pipeline” model is a simplification of the actual state of affairs.
Recall that in the case where the driver schedules multiple frontend jobs, the list of
source files is partitioned into disjoint subsets, where each subset becomes the primary
files of some frontend job. Ultimately, each frontend job only needs to generate machine
code from the declarations in its primary files, so all stages from SILGen onward operate
on the frontend job’s primary files only.

However, the situation with parsing and type checking is more subtle. At a minimum,
each frontend job must parse and type check its primary files. Furthermore, the partition
of source files into frontend jobs is artificial and not visible to the user, and certainly a
declaration in a primary file can reference declarations in secondary files. Therefore, in
the general case, the abstract syntax tree for all secondary files must be available to a
frontend job as well. On the other hand, it would be inefficient if every frontend job was
required to fully parse all secondary files, because the time spent in the parser would
be proportional to the number of frontend jobs multiplied by the number of source files,
negating the benefits of parallelism.

The delayed parsing optimization solves this dilemma. When parsing a secondary
file for the first time, syntax tree nodes for the bodies of top-level types, extensions
and functions are not actually built. Instead, the parser operates in a high-speed mode
where comments are skipped and pairs of braces are matched, but very little other work
is performed. This constructs a “skeleton” representation of each secondary file. If the
body of a type or extension in a secondary file is needed later—for example, because
the type checking of a declaration in a primary file needs to perform a name lookup into
this type—the source range of the declaration is parsed again, this time building the full
syntax tree.

Operator lookup is incompatible with delayed parsing, because operator functions
defined inside types are globally visible, as explained in the previous section. To deal
with this, the parser looks for the keyword “func” followed by an operator symbol
when skipping a type or extension body in a secondary file. The presence of this token
sequence effectively disables delayed parsing for this declaration, because the first time
an operator lookup is performed in the expression pre-checking pass, the bodies of all
types containing operator functions are parsed again. Most types and extensions do not
define operator functions, so this occurs rarely in practice.

36

2.2. Delayed Parsing

The situation with AnyObject lookup is similar, since a method call on a value of
type AnyObject must consult a global lookup table constructed from @objc members
of classes, and the (implicitly @objc) members of @objc protocols. Unlike operator
functions, classes and @objc protocols are quite common in Swift programs, so it would
be unfortunate to penalize compile-time performance when AnyObject is a rarely-used
feature. Instead, the solution is to eagerly parse classes and @objc protocols the first
time a frontend job encounters a dynamic AnyObject method call.

There’s actually one more complication here. Classes can be nested inside of other
types, whose bodies are skipped if they appear in a secondary file. This is resolved with
the same trick as operator lookup. When skipping the body of a type, the parser looks
for occurrences of the “class” keyword. If the body contains this keyword, this type is
parsed and its members visited recursively when building the AnyObject global lookup
table.
Most Swift programs, even those making heavy use of Objective-C interoperability,

do not contain a dynamic AnyObject method call in every source file, so delayed parsing
remains effective.

Example 2.1. Listing 2.2 shows an example of this behavior. This program consists of
three files. Suppose that the driver kicks off three frontend jobs, with a single primary
file for each frontend job:

• The frontend job with the primary file a.swift will parse b.swift and c.swift

as secondary files. The body of g() in b.swift is skipped, and the body of Outer
in c.swift is skipped. The parser makes a note that Outer contains the class

keyword. The function f() in a.swift contains a dynamic AnyObject method
call, so this frontend job will construct the global lookup table, triggering parsing
of Outer and Inner in c.swift.

• The frontend job with the primary file b.swift will parse a.swift and c.swift

as secondary files. This primary file does not reference anything from c.swift at
all, so Outer remains unparsed in this frontend job. Type checking the call to f()

from g() also does not require parsing the body of f().

• The frontend job with the primary file c.swift will parse a.swift and b.swift

as secondary files, skipping parsing the bodies of f() and g().

Example 2.2. It is possible to construct a program where type checking of each primary
file triggers complete parsing of all type and extension bodies in every secondary file,
either because of pathological dependencies between source files, or extreme reliance on
operator lookup and AnyObject lookup. Listing 2.3 shows an example of the first kind.
Again, if you assume the driver kicks off three frontend jobs with a single primary file
for each frontend job, then each frontend job will eventually parse all type bodies in the
other two secondary files.

37

2. Compilation Model

Listing 2.2.: Delayed parsing with AnyObject lookup

1 // a.swift

2 func f(x: AnyObject) {

3 x.foo()!

4 }

1 // b.swift

2 func g() {

3 f()

4 }

1 // c.swift

2 struct Outer {

3 class Inner {

4 @objc func foo() {}

5 }

6 }

2.3. Request Evaluator

The request evaluator is central to the architecture of the Swift compiler. Essentially, the
request evaluator is a framework for performing queries against the abstract syntax tree.
A request packages a list of input parameters together with an evaluation function. With
the exception of emitting diagnostics, the evaluation function should be referentially
transparent. Only the request evaluator should directly invoke the evaluation function;
the request evaluator caches the result of the evaluation function for subsequent requests.
As well as caching results, the request evaluator implements automatic cycle detection,
and dependency tracking for incremental builds.

The request evaluator is used to implement a form of lazy type checking. We saw
from the previous section that in any given frontend job, declarations in primary files
can reference declarations in secondary files without restriction. Swift programmers also
know that declarations in a source file can also appear in any order; there is no need to
forward declare names, and certain kinds of circular references are also permitted.

For this reason the classic compiler design of a single type-checking pass that walks
declarations in source order is not well-suited for Swift. Indeed, while the Swift type
checker does walk over the declarations in each primary file over source order, instead
of directly performing type checking work, it kicks off a series of requests which perform

38

2.3. Request Evaluator

Listing 2.3.: Defeating delayed parsing

1 // x.swift

2 struct A {

3 typealias T = B.T

4 typealias U = C.T

5 }

1 // y.swift

2 struct B {

3 typealias T = C.T

4 typealias U = A.T

5 }

1 // z.swift

2 struct C {

3 typealias T = Int

4 typealias U = B.T

5 }

39

2. Compilation Model

Listing 2.4.: Forward reference example

1 let food = cook()

2 func cook() -> Food {}

3 struct Food {}

queries against declarations that may appear further down in the primary file, or in other
secondary files. The compiler defines over two hundred kinds of requests. Important
request kinds include:

• The type-check source file request is the key entry point into the type checker,
explained below.

• The AST lowering request is the entry point into SILGen, generating SIL from
the abstract syntax tree for a source file.

• The unqualified lookup request and qualified lookup request perform the
two kinds of name lookup described in the previous section.

• The interface type request is explained in Chapter 4.

• The generic signature request is explained in Chapter 11.

The type-check source file request’s evaluation function visits each declaration in
a primary source file. It is responsible for kicking off enough requests to ensure that
SILGen can proceed if all requests succeeded without emitting diagnostics. Consider
what happens when type checking the program in Listing 2.4:

1. The type-check source file request begins by visiting the declaration of food
and performing various semantic checks.

2. One of these checks evaluates the interface type request with the declaration
of food. This is a variable declaration, so the evaluation function type checks the
initial value expression and returns the type of the result.

a) In order to type check the expression cook(), the interface type request is
evaluated again, this time with the declaration of cook as its input parameter.

b) The interface type of cook() has not been computed yet, so the request
evaluator calls the evaluation function for this request.

3. After computing the interface type of food and performing other semantic checks,
the type-check source file request moves on to the declaration of cook:

40

2.3. Request Evaluator

Listing 2.5.: Diagnostic emitted during SILGen

1 // a.swift

2 struct Box {

3 let contents: DoesNotExist

4 }

1 // b.swift

2 func open(_: Box) {}

a) The interface type request is evaluated once again, with the input param-
eter being the declaration of cook.

b) The result was already cached, so the request evaluator immediately returns
the cached result without computing it again.

The type-check source file request is special, because it does not return a value; it
is evaluated for the side effect of emitting diagnostics, whereas most other requests return
a value. The implementation of the type-check source file request guarantees that
if no diagnostics were emitted, then SILGen can generate valid SIL for all declarations
in a primary file. However, SILGen can still evaluate other requests which result in
diagnostics being emitted in secondary files.

Example 2.3. Listing 2.5 shows a program with two files. The first file declares a struct
with a stored property naming a non-existent type. The second file declares a function
whose input parameter type is the struct type declared by this struct declaration.

A frontend job with the primary file b.swift and the secondary file a.swift does not
emit any diagnostics in the type checking pass, because the stored property contents

of Box is not actually referenced.

However when SILGen runs, it needs to determine whether the parameter of type
Box to the open() function needs to be passed directly in registers, or via an address
by computing the type lowering for the Box type. Type lowering recursively visits the
stored properties of Box and computes their type lowering; this evaluates the interface
type request for the contents property of Box, which emits a diagnostic because the
identifier “DoesNotExist” does not resolve to a valid type.

The request evaluator framework was first introduced in Swift 4.2 [5]. In subsequent
releases, various ad-hoc mechanisms were gradually converted into request evaluator
requests, with resulting gains to compiler performance, stability, and implementation
maintainability.

41

2. Compilation Model

Cycles In a language that supports forward references, it is possible to write a program
that is syntactically well-formed, and where all identifiers resolve to valid declarations,
but is nonetheless invalid because of circularity. The classic example of this is a pair of
classes where each class inherits from the other:

1 class A: B {}

2 class B: A {}

Implementing bespoke logic to detect circularity is error-prone and tedious, and a missing
circularity check can result in a crash or infinite loop when the compiler encounters an
invalid input program. Instead, the request evaluator solves this problem in a more
elegant way by maintaining a stack of active requests. When a request is evaluated,
the request evaluator first checks if the active request stack contains a request with
the same kind and equal input parameters. In this case, calling the evaluation function
would result in infinite recursion, so instead the request evaluator diagnoses an error and
returns a request-specific sentinel value. The circularity diagnostic can be customized
for each request kind; the default just reports a “circular reference.” If the compiler is
invoked with the -debug-cycles frontend flag, the active request stack is also printed:

1 $ swiftc cycle.swift -Xfrontend -debug-cycles

2 ===CYCLE DETECTED===

3 ‘--TypeCheckSourceFileRequest(source_file "cycle.swift")

4 ‘--SuperclassDeclRequest(cycle.(file).A@cycle.swift:1:7)

5 ‘--SuperclassDeclRequest(cycle.(file).B@cycle.swift:2:7)

6 ‘--SuperclassDeclRequest(cycle.(file).A@cycle.swift:1:7)

7 cycle.swift:1:7: error: ‘A’ inherits from itself

8 class A: B {}

9 ^

10 cycle.swift:2:7: note: class ‘B’ declared here

11 class B: A {}

12 ^

Debugging In addition to -debug-cycles, a couple of command-line flags help with
debugging compile-time performance issues. The -stats-output-dir flag is followed
by the name of a directory, which must already exist. Each frontend job writes a new
JSON file to this directory, with various counters and timers. For each kind of request,
there is a counter for the number of unique requests of this kind that were evaluated,
not counting requests whose results were cached. The timer records the time spent in
the request’s evaluation function. The output can be sliced and diced in various ways;
you can actually make pretty effective use of awk, despite the JSON format:

42

2.4. Incremental Builds

1 $ mkdir /tmp/stats

2 $ swiftc ... -stats-output-dir /tmp/stats

3 $ awk ’/InterfaceTypeRequest.wall/ { x += $2 } END { print x }’ \

4 /tmp/stats/*.json

The second command-line flag is -trace-stats-events. It must be passed in con-
junction with -stats-output-dir, and enables output of a trace file to the statistics
directory. The trace file records a time-stamped event for the start and end of each
request evaluation function, in CSV format.

2.4. Incremental Builds

The request evaluator also records dependencies for incremental compilation. The goal
of incremental compilation is to prove which files do not need to be rebuilt, in the least
conservative way possible. The quality of an incremental compilation implementation
can be judged as follows:2

1. Perform a clean build of all source files in the program, and collect the object files.

2. Make a change to one or more source files in the input program.

3. Do an incremental build, which rebuilds some subset of source files in the input
program. If a source file was rebuilt but the resulting object file is identical to the
one saved in Step 1, the incremental build performed wasted work.

4. Finally, do another clean build, which yet again rebuilds all source files in the input
program. If a source file was rebuilt and the resulting object file is different to the
one saved in Step 1, the incremental build was incorrect.

This highlights the difficulty of the incremental compilation problem. Rebuilding too
many files is an annoyance; rebuilding too few files is an error. A correct but ineffective
implementation would rebuild all source files every time. The opposite approach of only
rebuilding the subset of source files that have changed since the last compiler invocation is
also too aggressive. To see why it is incorrect, consider the program shown in Listing 2.6.
Let’s say the programmer builds the program, adds the overload f: (Int) -> (), then
builds it again. The new overload is more specific, so the call f(123) in b.swift now
refers to the new overload; therefore, b.swift must also be rebuilt.

The approach used by the Swift compiler is to construct a dependency graph. The
frontend outputs a dependency file for each source file, recording all names the source
file provides, and all names the type checker requires while compiling the source file.

2Credit for this idea goes to David Ungar.

43

2. Compilation Model

Listing 2.6.: Rebuilding a file after adding a new overload

1 // a.swift

2 func f<T>(_: T) {}

3

4 // new overload added in second version of file

5 func f(_: Int) {}

1 // b.swift

2 func g() {

3 f(123)

4 }

When performing an incremental build, the driver begins by rebuilding all source files
which have changed since the last compilation, because at a minimum, these files need
to be rebuilt. Then, the driver reads the dependency files, collecting all names provided
by the changed source files, and rebuilds all source files which require those names.
Dependency files use a binary serialization format and have the “.swiftdeps” file

name extension. The list of provided names in the dependency file is generated by
walking the abstract syntax tree, collecting all visible declarations in each source file.
The list of required names is generated by the request evaluator, using the stack of active
requests. Every cached request has a list of required names, and a request can optionally
be either a dependency sink, or dependency source.
A dependency sink is a name lookup request which records a required name. When

a dependency sink request is evaluated, the request evaluator walks the stack of active
requests, adding the identifier to each active request’s list of required names. When a
request with a cached value is evaluated again, the request’s existing list of required
names is “replayed,” adding them to each active request that depends on the cached
value.
A dependency source is a request which appears at the top of the request stack, such

as the type-check source file request or the AST lowering request. After a
dependency source request has been evaluated, its list of required names is added to the
corresponding source file’s list of required names.

Example 2.4. The above describes a subtle trick when evaluating a request whose result
has already been cached. Listing 2.7 shows a program with three source files. Suppose
now that the driver decides to compile both a.swift and b.swift in the same frontend
job. This frontend job proceeds as follows:

1. First, the type-check source file request runs with the source file a.swift.

44

2.4. Incremental Builds

Listing 2.7.: Recording incremental dependencies

1 // a.swift

2 func breakfast() {

3 soup(nil)

4 }

1 // b.swift

2 func lunch() {

3 soup(nil)

4 }

1 // c.swift

2 func soup(_: Pumpkin?) {}

3 struct Pumpkin {}

a) While type checking the body of breakfast(), the type checker evaluates
the unqualified lookup request with the identifier “soup.”

b) This records the identifier “soup” in the requires list of each active request.
There is one active request, the type-check source file request for a.swift.

c) The lookup finds the declaration of soup() in c.swift.

d) The type checker evaluates the interface type request with the declaration
of soup().

i. The interface type request evaluates the unqualified lookup re-
quest with the identifier “Pumpkin.”

ii. This records the identifier “Pumpkin” in the requires list of each active
request, of which there are now two: the interface type request for
soup(), and the type-check source file request for a.swift.

e) The type-check source file request for a.swift has now finished. The
requires list for this request contains two identifiers, “soup” and “Pumpkin”;
both are added to the requires list of the source file a.swift.

2. Next, the type-check source file request runs with the source file b.swift.

a) While type checking the body of lunch(), the type checker evaluates the
unqualified lookup request with the identifier “soup.”

b) This records the identifier “soup” in the requires list of each active request.
There is one active request, the type-check source file request for b.swift.

45

2. Compilation Model

c) The lookup finds the declaration of soup() in c.swift.

d) The type checker evaluates the interface type request with the declaration
of soup().

e) This request has already been evaluated, and the cached result is returned.
The requires list for this request is the single identifier “Pumpkin.” This
requires list is replayed, as if the request was being evaluated for the first
time. This adds the identifier “Pumpkin” to the requires list of each active
request, of which there is just one: the type-check source file request for
b.swift.

f) The type-check source file request for b.swift has now finished. The
requires list for this request contains two identifiers, “soup” and “Pumpkin”;
both are added to the requires list of the source file b.swift.

Once this frontend job completes, dependency files for a.swift and b.swift are written
out. Both source files require the names “soup” and “Pumpkin.” The dependency of
b.swift on “Pumpkin” is correctly recorded because evaluating a request with a cached
value replays the request’s requires list in Step (2.f) above.

There’s a bit more to the story than this, but we’re already far afield from the goal of
describing Swift generics; you can find more details in [5] and [6].

2.5. Module System

The list of source files in a compiler invocation together form the main module. The main
module is special, because its abstract syntax tree is constructed directly by parsing
source code. There are three other kinds of modules: serialized modules, imported
modules, and the built-in module.

A module is represented by a module declaration containing one or more file units. In
the main module, the file units are source files, where each stores the parsed syntax tree
for that source file. A serialized module contains one or more serialized AST file units
and imported modules consist of one or more Clang file units.

The import keyword parses as an import declaration. After parsing, one of the first
stages of type checking loads all modules imported by the main module. The standard
library is defined in the Swift module, which is imported automatically unless the
frontend was invoked with the -parse-stdlib flag, which is used when building the
standard library itself.

As for the special Builtinmodule, it contains types and intrinsics implemented by the
compiler itself, to be used when implementing the standard library. The -parse-stdlib
flag also causes the built-in module to be implicitly imported (Section 3.4).

46

2.5. Module System

Serialized Modules A serialized module is output when the Swift compiler is invoked
with the -emit-module flag. Serialized module files use the “.swiftmodule” file name
extension. Serialized modules are stored in a binary format, closely tied to the specific
version of the Swift compiler (when building a shared library for distribution, it is better
to publish a textual interface instead, as described at the end of this section). Name
lookup into a serialized module lazily constructs declarations by deserializing records
from this binary format as needed.

Deserialized declarations generally look like parsed declarations that have already been
type checked, but they sometimes contain less information. For example, in Chapter 5,
you will see various syntactic representations of generic parameter lists, where clauses,
and so on. Since this information is only used when type checking the declaration, it is
not serialized. Instead, deserialized declarations only need to store a generic signature,
described in Chapter 6.

Another key difference between parsed declarations and deserialized declarations is
that parsed function declarations have a body, consisting of statements and expressions.
This body is never serialized, so deserialized function declarations never have a body.
The one case where the body of a function is made available across module boundaries
is when the function is annotated with the @inlinable attribute; this is implemented
by serializing the SIL representation of the function instead.

Imported Modules An imported module is implemented in C, Objective-C or C++.
The Swift compiler embeds a copy of Clang and uses it to parse module maps, header
files, and binary precompiled headers. Name lookup into an imported module lazily
constructs Swift declarations from their corresponding Clang declarations. The Swift
compiler component responsible for this is known as the “ClangImporter.”

Imported function declarations generally do not have bodies if the entry point was
previously emitted by Clang and is available externally. Occasionally the ClangImporter
synthesizes accessor methods and other such trivia, which do have bodies represented as
Swift statements and expressions. C functions not available externally, such as static
inline functions declared in header files, are emitted by having Swift IRGen call into
Clang.

Invoking the compiler with the -import-objc-header flag followed by a header file
name specifies a bridging header. This is a shortcut for making C declarations in the
bridging header visible to all other source files in the main module, without having to
define a separate Clang module first. This is implemented by adding a Clang file unit
corresponding to the bridging header to the main module. For this reason, you should
not assume that all file units in the main module are necessarily source files.

Textual Interfaces The Swift binary module format depends on compiler internals and
no attempt is made to preserve compatibility across compiler releases. When building a

47

2. Compilation Model

shared library for distribution, you can instead generate a textual interface:

1 $ swiftc Horse.swift -enable-library-evolution -emit-module-interface

The -enable-library-evolution flag enables resilience, which instructs client code to
use more abstract access patterns which are guaranteed to only depend on the published
public declarations of a module. For example, this allows adding new fields to a public
struct, since client code is required to pass the struct indirectly. Library evolution is a
prerequisite for emitting a textual interface; unlike the serialized module format, textual
interfaces only describe the public declarations of a module.

Textual interface files use the “.swiftinterface” file name extension. They are
generated by the AST printer, which prints declarations in a format that looks very
much like Swift source code, with a few exceptions:

1. Non-@inlinable function bodies are skipped. Bodies of @inlinable functions are
printed verbatim, including comments, except that #if conditions are evaluated.

2. Various synthesized declarations, such as type alias declarations from associated
type inference, witnesses for derived conformances such as Equatable, and so on,
are written out explicitly.

3. Opaque return types also require special handling (Section 14.2).

Note that (1) above means the textual interface format is target-specific; a separate
textual interface needs to be generated for each target platform, alongside the shared
library itself.

When a module defined by a textual interface is imported for the first time, a frontend
job parses and type checks the textual interface, and generates a serialized module file
which is then consumed by the original frontend job. Serialized module files generated
in this manner are cached, and can be reused between invocations of the same compiler
version.

The @inlinable attribute was introduced in Swift 4.2 [7]. The Swift ABI was formally
stabilized in Swift 5.0, when the standard library became part of the operating system on
Apple platforms. Library evolution support and textual interfaces became user-visible
features in Swift 5.1 [8].

2.6. Source Code Reference

The Swift driver is now implemented in Swift, and lives in a separate repository from
the rest of the compiler:

https://github.com/apple/swift-driver

48

https://github.com/apple/swift-driver

2.6. Source Code Reference

The Swift frontend, standard library and runtime are found in the main repository:

https://github.com/apple/swift

The major components of the Swift frontend live in their own subdirectories of the
main repository. The entities modeling the abstract syntax tree are defined in lib/AST/

and include/swift/AST/; among these, types and declarations are important for the
purposes of this book, and will be covered in Chapter 3 and Chapter 4. The core of the
SIL intermediate language is implemented in lib/SIL/ and include/swift/SIL/.

Each stage of the compilation pipeline has its own subdirectory:

• lib/Parse/

• lib/Sema/

• lib/SILGen/

• lib/SILOptimizer/

• lib/IRGen/

The AST Context

Key source files:

• include/swift/AST/ASTContext.h

• lib/AST/ASTContext.cpp

ASTContext class

The global singleton for a single frontend instance. An AST context provides a memory
allocation arena, unique allocation for various immutable data types used throughout
the compiler, and storage for various other global singletons.

Request Evaluator

Key source files:

• include/swift/AST/Evaluator.h

• lib/AST/Evaluator.cpp

49

https://github.com/apple/swift
https://github.com/apple/swift/tree/main/lib/AST/
https://github.com/apple/swift/tree/main/include/swift/AST/
https://github.com/apple/swift/tree/main/lib/SIL/
https://github.com/apple/swift/tree/main/include/swift/SIL/
https://github.com/apple/swift/tree/main/lib/Parse/
https://github.com/apple/swift/tree/main/lib/Sema/
https://github.com/apple/swift/tree/main/lib/SILGen/
https://github.com/apple/swift/tree/main/lib/SILOptimizer/
https://github.com/apple/swift/tree/main/lib/IRGen/
https://github.com/apple/swift/tree/main/include/swift/AST/ASTContext.h
https://github.com/apple/swift/tree/main/lib/AST/ASTContext.cpp
https://github.com/apple/swift/tree/main/include/swift/AST/Evaluator.h
https://github.com/apple/swift/tree/main/lib/AST/Evaluator.cpp

2. Compilation Model

SimpleRequest template class

Each request kind is a subclass of SimpleRequest. The evaluation function is imple-
mented by overriding the evaluate() method of SimpleRequest.

RequestFlags enum class

One of the template parameters to SimpleRequest is a set of flags:

• RequestFlags::Uncached: indicates that the result of the evaluation function
should not be cached.

• RequestFlags::Cached: indicates that the result of the evaluation function should
be cached by the request evaluator, which uses a per-request kind DenseMap for
this purpose.

• RequestFlags::SeparatelyCached: the result of the evaluation function should
be cached by the request implementation itself, as described below.

• RequestFlags::DependencySource, DependencySink: if one of these is set, the
request kind becomes a dependency source or sink, as described in Section 2.4.

Separate caching can be more performant if it allows the cached value to be stored
directly inside of an AST node, instead of requiring the request evaluator to consult a
side table. For example, many requests taking a declaration as input store the result
directly inside of the Decl instance or some subclass thereof.

Due to expressivity limitations in C++, a bit of boilerplate is involved in the definition
of a new request kind. For example, consider the InterfaceTypeRequest, which takes
a ValueDecl as input and returns a Type as output:

• The request type ID is declared in
include/swift/AST/TypeCheckerTypeIDZone.def.

• The InterfaceTypeRequest class is declared in
include/swift/AST/TypeCheckRequests.h.

• The InterfaceTypeRequest::evaluate() method is defined in
lib/Sema/TypeCheckDecl.cpp.

• The request is separately cached. The InterfaceTypeRequest class overrides
the isCached(), getCachedResult() and cacheResult() methods to store the
declaration’s interface type inside the ValueDecl instance itself. These methods
are implemented in lib/AST/TypeCheckRequestFunctions.cpp.

50

https://github.com/apple/swift/tree/main/include/swift/AST/TypeCheckerTypeIDZone.def
https://github.com/apple/swift/tree/main/include/swift/AST/TypeCheckRequests.h
https://github.com/apple/swift/tree/main/lib/Sema/TypeCheckDecl.cpp
https://github.com/apple/swift/tree/main/lib/AST/TypeCheckRequestFunctions.cpp

2.6. Source Code Reference

Evaluator class

Request evaluation is performed by calling the evaluateOrDefault() top-level function,
passing it an instance of the request evaluator, the request to evaluate, and a sentinel
value to return in case of circularity. The Evaluator class is a singleton, stored in the
evaluator instance variable of the global ASTContext singleton. The request evaluator
will either return a cached value, or invoke the evaluation function and cache the result.
For example, the getInterfaceType() method of ValueDecl is implemented as follows:

1 Type ValueDecl::getInterfaceType() const {

2 auto &ctx = getASTContext();

3 return evaluateOrDefault(

4 ctx.evaluator,

5 InterfaceTypeRequest{const_cast<ValueDecl *>(this)},

6 ErrorType::get(ctx)));

7 }

Name Lookup

Key source files:

• include/swift/AST/NameLookup.h

• include/swift/AST/NameLookupRequests.h

• lib/AST/NameLookup.cpp

• lib/AST/UnqualifiedLookup.cpp

The “AST scope” subsystem implements unqualified lookup for local bindings. Outside
of the name lookup implementation itself, the rest of the compiler does not generally
interact with it directly:

• include/swift/AST/ASTScope.h

• lib/AST/ASTScope.cpp

• lib/AST/ASTScopeCreation.cpp

• lib/AST/ASTScopeLookup.cpp

• lib/AST/ASTScopePrinting.cpp

• lib/AST/ASTScopeSourceRange.cpp

51

https://github.com/apple/swift/tree/main/include/swift/AST/NameLookup.h
https://github.com/apple/swift/tree/main/include/swift/AST/NameLookupRequests.h
https://github.com/apple/swift/tree/main/lib/AST/NameLookup.cpp
https://github.com/apple/swift/tree/main/lib/AST/UnqualifiedLookup.cpp
https://github.com/apple/swift/tree/main/include/swift/AST/ASTScope.h
https://github.com/apple/swift/tree/main/lib/AST/ASTScope.cpp
https://github.com/apple/swift/tree/main/lib/AST/ASTScopeCreation.cpp
https://github.com/apple/swift/tree/main/lib/AST/ASTScopeLookup.cpp
https://github.com/apple/swift/tree/main/lib/AST/ASTScopePrinting.cpp
https://github.com/apple/swift/tree/main/lib/AST/ASTScopeSourceRange.cpp

2. Compilation Model

UnqualifiedLookupRequest class

Unqualified lookups are performed by evaluating an instance of this request kind. The
request takes an UnqualifiedLookupDescriptor as input.

UnqualifiedLookupDescriptor class

Encapsulates the input parameters for an unqualified lookup:

• The name to look up.

• The declaration context where the lookup starts.

• The source location where the name was written in source. If not specified, this
becomes a top-level lookup.

• Various flags, described below.

UnqualifiedLookupFlags enum class

Flags passed as part of an UnqualifiedLookupDescriptor.

• UnqualifiedLookupFlags::TypeLookup: if set, lookup ignores declarations other
than type declarations. This is used in type resolution.

• UnqualifiedLookupFlags::AllowProtocolMembers: if set, lookup finds members
of protocols and protocol extensions. Generally should always be set, except to
avoid request cycles in cases where it is known the result of the lookup cannot
appear in a protocol or protocol extensions.

• UnqualifiedLookupFlags::IgnoreAccessControl if set, lookup ignores access
control. Generally should never be set, except when recovering from errors in
diagnostics.

• UnqualifiedLookupFlags::IncludeOuterResults if set, lookup stops after find-
ing results in an innermost scope, or to always proceed to a top-level lookup.

DeclContext class
Declaration contexts will be introduced in Chapter 4, and the DeclContext class in
Section 4.4.

• lookupQualified() has various overloads, which perform a qualified name lookup
into one of various combinations of types or declarations. The “this” parameter—
the DeclContext * which the method is called on determines the visibility of
declarations found via lookup through imports and access control; it is not the
base type of the lookup.

52

2.6. Source Code Reference

NLOptions enum

Similar to UnqualifiedLookupFlags, but for DeclContext::lookupQualified().

• NL_OnlyTypes: if set, lookup ignores declarations other than type declarations.
This is used in type resolution.

• NL_ProtocolMembers: if set, lookup finds members of protocols and protocol ex-
tensions. Generally should always be set, except to avoid request cycles in cases
where it is known the result of the lookup cannot appear in a protocol or protocol
extension.

• NL_IgnoreAccessControl: if set, lookup ignores access control. Generally should
never be set, except when recovering from errors in diagnostics.

NominalTypeDecl class

Nominal type declarations will be introduced in Chapter 4, and the NominalTypeDecl

class in Section 4.4.

• lookupDirect() performs a direct lookup, which only searches the nominal type
declaration itself, and its extensions.

Primary File Type Checking

Key source files:

• lib/Sema/TypeCheckDeclPrimary.cpp

The TypeCheckSourceFileRequest calls the typeCheckDecl() global function, which
uses the visitor pattern to switch on the declaration kind. For each declaration kind, it
performs various semantic checks and kicks off requests which may emit diagnostics.

Module System

ModuleDecl class

A module.

• getName() returns the module’s name.

• getFiles() returns an array of FileUnit.

• isMainModule() answers if this is the main module.

53

https://github.com/apple/swift/tree/main/lib/Sema/TypeCheckDeclPrimary.cpp

2. Compilation Model

FileUnit class

Abstract base class representing a file unit.

SourceFile class

Represents a parsed source file from disk. Inherits from FileUnit.

• getTopLevelDecls() returns an array of all top-level declarations in this source
file.

• isPrimary() returns true if this is a primary file, false if this is a secondary file.

• isScriptMode() answers if this is the main file of a module.

• getScope() returns the root of the scope tree for unqualified lookup.

Imported and serialized modules get a subdirectory each:

• lib/ClangImporter/

• lib/Serialization/

The AST printer for generating textual interfaces is implemented in a pair of files:

• include/swift/AST/ASTPrinter.h

• lib/AST/ASTPrinter.cpp

The interface between name lookup and the module system is mediated by a pair of
abstract base classes defined in the below header file:

• include/swift/AST/LazyResolver.h

LazyMemberLoader class

Abstract base class implemented by different kinds of modules to look up top-level
declarations and members of types and extensions. For the main module, this consults
lookup tables, for serialized modules this deserializes records and builds declarations from
them, for imported modules this constructs Swift declarations from Clang declarations.

LazyConformanceLoader class

Abstract base class implemented by different kinds of modules to fill out conformances
(Chapter 8).

54

https://github.com/apple/swift/tree/main/lib/ClangImporter/
https://github.com/apple/swift/tree/main/lib/Serialization/
https://github.com/apple/swift/tree/main/include/swift/AST/ASTPrinter.h
https://github.com/apple/swift/tree/main/lib/AST/ASTPrinter.cpp
https://github.com/apple/swift/tree/main/include/swift/AST/LazyResolver.h

3. Types

Swift makes a distinction between a type representation, read by the parser, and a type,
which is a semantic object understood by the type checker. Type representations are
resolved to types by performing type resolution.

Not all types are constructed by resolving type representations written in source;
building types and taking them apart is an extremely common activity throughout the
compiler.

Notation A few words about the notation used throughout this book. For convenience,
we identify the printed form of a type, such as Array<Int>, with its type representation
and the semantic type, depending on context. But what does it actually mean to say
that the string “Array<Int>” parses into the type representation Array<Int> which
resolves into the type Array<Int>?

First, we have the string “Array<Int>” written somewhere in a source file. The lexer
splits the string up into a sequence of tokens: “Array”, “<”, “Int”, and “>”. The parser
reads each token, building up a type representation.

A type representation has a tree structure, so when we talk about the type represen-
tation Array<Int>, we really mean this:

“An identifier type representation with a single component, storing the iden-
tifier Array together with a single generic argument. The generic argument is
another identifier type representation, again with a single component, storing
the identifier Int.”

Types also have a tree structure, so when we talk about the type Array<Int>, what we
really mean is:

“A generic nominal type for the struct declaration named Array, with a
single generic argument. The single generic argument is a nominal type for
the struct declaration named Int.”

The difference between the type representation Array<Int> and the type Array<Int> is
that the type representation only stores identifiers, with no connection to the declaration
of Array and Int. The semantic type points at the declarations themselves.

There is also a notion of validity here. The string “Foo>(<Bar” is neither a type
representation nor a type. The strings Array<Int, String> and Pasta<TomatoSauce>

55

3. Types

can both be seen as type representations, but the former does not resolve to a valid type
because Array only has a single generic argument. The latter only resolves to a valid
type if a type declaration named Pasta exists, and if TomatoSauce also resolves to a
valid type.

Type representations are rarely encountered outside of the type resolution process and
the parser itself, so we will leave them aside until Chapter 10.

Tree structure Types are categorized into kinds, such as nominal types, function types,
and so on. Each kind of type is composed of smaller structural components, including
other types, pointers to declarations, and various attributes. Factory methods for each
kind construct types from their structural components, and analogously, each kind has
getter methods to take the type apart. Once created, types are immutable.

This gives types a recursive tree structure. To say that a type contains another type
means that the latter appears as a child node of the former. This concept is most useful
when talking about types containing generic parameters, because those types can be
substituted to form concrete types. For example, if T is a generic parameter type, the
type Array<T> can be substituted by replacing T with Int. This gives you the type
Array<Int>, which no longer contains any generic parameters.

Various utility operations exist to walk the recursive structure of a type, check if it
contains a type with certain properties, or transform its contained types, forming a new
type with the same tree structure.

Canonical types The Swift grammar defines some shorthand spellings for common
types, such as [T] for Array<T> and T? for Optional<T>. Type alias declarations are
another kind of shorthand; declaring a type alias type introduces a new name for some
existing type. The various alternate spellings for existing types are called sugared types;
Section 3.3 gives a full account of the possible kinds.

A type is canonical if it does not contain any sugared types. Computing the canonical
type of an arbitrary type returns the original type if it was already canonical, otherwise it
transforms the type by replacing all sugared types that it contains with their desugared
form.

The compiler tries to preserve type sugar when resolving type representations into
types and when transforming types, ensuring that types mentioned in diagnostics look
like the types written by the user. After type checking, compiler passes such as SILGen
and IRGen mostly deal with canonical types.

For the most part, type sugar has no semantic effect. For example, it would not make
sense to define two overloads of the same function that only differ by sugared types.
One notable exception is the rule for default initialization of variables: if the variable’s
type is declared as the sugared optional type T? for some T, the variable’s initial value
expression is assumed to be nil if none was provided. Spelling the type as Optional<T>

56

Listing 3.1.: The sugared optional type has a semantic effect

1 var x: Int?

2 print(x) // prints ‘nil’

3

4 var y: Optional<Int>

5 print(y) // error: use of uninitialized variable ‘y’

avoids the default initialization behavior. Listing 3.1 shows an example of this rule.

Type equality In addition to being immutable, types are uniquely allocated; if the type
Array<Int> is constructed twice in the same compilation instance, both values will point
at the same type object in memory. Three levels of equality are defined on types, from
strongest to weakest:

1. Pointer equality determines if two types are exactly equal as trees. The type
Array<Int> is not pointer-equal to the sugared type [Int].

2. Canonical equality determines if two types have the same canonical type. The
types Array<Int> and [Int] are canonical-equal, because the canonical type of
[Int] is Array<Int>.

3. Reduced equality determines if two types have the same reduced type with
respect to a generic signature. Two different type parameters can reduce to the
same type parameter when same-type requirements are in play. Reduced types are
formally introduced in Section 6.4.

If both types are already canonical, the first two relations coincide; if both types are
reduced, all three coincide.
The remainder of this chapter describes, for each kind of type, the role it plays in the

language and how it breaks down into structural components.

Nominal types A nominal type is the type declared by a non-generic struct, enum or
class declaration, such as Int. A generic nominal type is a type declared by a generic
struct, enum or class declaration, specialized with a list of generic arguments, such as
Array<Int>.

Both kinds of nominal types point at their declaration. They also store a parent type
if the nominal type declaration is nested inside of another nominal type declaration. The
parent type can be a sugared type, but its canonical type must always be the correct
nominal type for the original type declaration’s parent type declaration. Nested type
declarations are described in Section 4.1.

57

3. Types

3.1. Structural Types

Structural types are those built-in to the language, rather than being defined in the
standard library or user code. Structural types are not to be confused with the types
produced by the structural resolution stage, which is discussed in Chapter 10.

Tuple types A tuple type is an ordered list of element types with optional labels. A
value of a tuple type is a list of values with the corresponding element types. The list of
element types can be empty, which gives the unique empty tuple type (). The standard
library declares a type alias Void whose underlying type is ().

From the user’s point of view, tuple types are either empty or have at least two
elements. An unlabeled one-element tuple type cannot be formed at all; (T) resolves to
the same type as T in the language.

Labeled one-element tuple types have a production in the grammar, but are explicitly
rejected by type resolution. They can still appear in the implementation when SILGen
needs to materialize the associated value of an enum case as a single value (for instance,
case person(name: String)), but such types cannot arise as the types of expressions
nor can they be written in source.

Function types The type of a function declaration or closure expression is a function
type. In the expression grammar, call expressions are formed from an expression with
a function type, such as a declaration reference, closure expression or result of another
call, together with an argument list.

A function type stores a parameter list, a return type, and attributes. The attributes
includes the function’s effect, @escaping attribute, and an optional calling convention:

• The two effect kinds are throws and async; the latter was introduced as part of
the concurrency model in Swift 5.5 [9].

• Non-escaping functions are second-class and can only be passed to other functions,
captured by non-escaping closures, or immediately called; they cannot be stored
inside other values.

• A @convention(thin) function is passed as a single function pointer, without a
closure context; it cannot capture values from outer scopes.

• A @convention(c) function is similarly restricted and also must have parameter
and return types representable in C.

• A @convention(block) function is an Objective-C block, which allow captures
but must have parameter and return types representable in Objective-C.

58

3.1. Structural Types

Listing 3.2.: “Tuple splat” function conversion example

1 func apply<T, U>(fn: (T) -> U, arg: T) -> U {

2 return fn(arg)

3 }

4

5 print(apply(fn: (+), arg: (1, 2))) // prints 3

Each entry in the parameter list consists of a parameter type and again, some non-type
bits:

• the value ownership kind, which is one of default, inout, owned or shared,

• the variadic flag, in which case the parameter type must be an array type.

• the @autoclosure attribute, in which case the parameter type must be another
function type of the form () -> T for some type T.

When type checking a call to function value with a variadic parameter, the type checker
collects multiple expressions from the call argument list into an implicit array expression.
Otherwise, variadic parameters behave exactly like arrays once you get to SILGen and
below.
The @autoclosure attribute instructs the type checker to treat the corresponding

argument in the caller as if it were a value of type T, rather than a function type () -> T.
The argument is then wrapped inside an implicit closure expression. In the body of the
callee, an @autoclosure parameter behaves exactly like an ordinary function value, and
can be called to evaluate the expression provided by the caller.

Note that the following are two different function types:

(Int, Int) -> Bool

((Int, Int)) -> Bool

The first has a parameter list with two entries, both storing the parameter type Int.
The second has a parameter list with a single entry, storing a tuple type of two elements,
(Int, Int). The type checker does define an implicit conversion between them though,
in the special case of passing a call argument. This allows the code in Listing 3.2 to type
check.
Listing 3.3 demonstrates another subtle point. Argument labels are part of a function

declaration’s name, not a function declaration’s type. A closure is always called without
argument labels. This includes the case of a closure formed from an unapplied reference
to a function declaration—even if the function declaration has argument labels.

59

3. Types

Listing 3.3.: Argument labels are not part of a function declaration’s type

1 func subtract(minuend x: Int, subtrahend y: Int) -> Int {

2 return x - y

3 }

4

5 print(subtract(minuend: 3, subtrahend: 1)) // prints 2

6

7 let fn1 = subtract // declaration name can omit argument labels

8 print(fn1(3, 1)) // prints 2

9

10 let fn2 = subtract(minuend:subtrahend:) // full declaration name

11 print(fn2(3, 1)) // prints 2

The history of Swift function types is an interesting case study in language evolution.
Originally, a function type always had a single input type, which could be a tuple type to
model a function of multiple arguments. Tuple types used to be able to represent inout
and variadic elements, and furthermore, the argument labels of a function declaration
were part of the function declaration’s type. The existence of such “non-materializable”
tuple types introduced complications throughout the type system, and argument labels
had inconsistent behavior in different contexts.

The syntax for referencing a declaration name with argument labels was adopted
in Swift 2.2 [10]. Subsequently, argument labels were dropped from function types
in Swift 3 [11]. The distinction between a function taking multiple arguments and a
function taking a single tuple argument was first hinted at in Swift 3 with [12] and
[13], and became explicit in Swift 4 [14]. At the same time, Swift 4 also introduced the
“tuple splat” function conversion which simulated the Swift 3 model in a limited way
for the cases where the old behavior was convenient. For example, the element type
of Dictionary is a key/value tuple, but you often want to call the Collection.map()

method with a closure taking two arguments, and not a closure with a single tuple
argument.

Even after the above proposals were implemented, the compiler continued to model
a function type as having a single input type for quite some time, despite this being
completely hidden from the user. After Swift 5, the function type representation fully
converged with the semantic model of the language.

Generic function types A generic function type is a function type adorned with a
generic signature. Generic function types only appear as the interface type of a function
declaration in a generic context.

60

3.2. Abstract Types

Swift’s type system does not support rank-2 polymorphism, so an expression in the
Swift language can never have a generic function type. When referenced from within an
expression, the interface type of a generic function declaration always has substitutions
applied, making the type of the expression into a non-generic function type.

Generic function types have a special behavior when their canonical type is computed.
Since generic function types carry a generic signature, the parameter types and return
type of a canonical generic function type are actually reduced types with respect to this
generic signature (Section 6.3).

Metatype types Types are values in Swift, and a metatype is the type of a type used
as a value. The metatype of a type T is written as T.Type. The type T is the instance
type of the metatype. For example (() -> ()).Type is the metatype type with the
instance type () -> (). This metatype has one value, the function type () -> ().

Metatypes are sometimes referred to as concrete metatypes, to distinguish them from
existential metatypes. Most concrete metatypes are singleton types, where the only value
is the instance type itself. One exception is class metatypes for non-final classes; the
values of a class metatype include the class type itself, but also all subclasses of the class.

3.2. Abstract Types

Generic parameter types A generic parameter type is the declared interface type of
a generic parameter declaration. The sugared form references the declaration, and the
canonical form only stores a depth and an index. This is all described in Chapter 5.

Care must be taken not to print canonical generic parameter types in diagnostics, to
avoid surfacing the “τ 1 2” notation to the user. Section 6.5 shows a trick to transform
a canonical generic parameter type back into its sugared form using a generic signature.

Dependent member types A dependent member type stores a base type together with
an identifier or an associated type declaration. The former is called an unbound depen-
dent member type, and the latter is bound. Unbound and bound dependent member
types do not present as different concepts in the language.

Instead, Chapter 10 describes how dependent member types written in source can be
first resolved from a type representation into their unbound form, and then resolved
again into a bound form once a generic signature is available. We will write T.A for the
unbound dependent member type with base type T and identifier A, or T.[P]A for the
bound dependent member type with base type T and associated type declaration A from
protocol P. The latter is not valid Swift syntax, but the notation is useful to distinguish
the two.

A dependent member type is proper if the base type is a generic parameter or another
proper dependent member type. Improper dependent member types appear internally in

61

3. Types

the expression type checker and associated type inference, but are not ever constructed
by type resolution. For the most part you can ignore them.

A type parameter is a generic parameter type or a proper dependent member type. A
type that might contain type parameters but is not necessarily a type parameter itself
is called an interface type.

Type parameters are discussed in Section 6.2 and Section 6.3.

Archetype types Type parameters only have meaning when considered together with
a generic signature; archetypes are an alternate “self-describing” representation that
stores their local requirements. An archetype is always part of a generic environment, a
concept introduced in Chapter 9.

Archetypes store a reduced type parameter together with their generic environment,
and the generic environment stores its generic signature; this signature describes the
requirements imposed on the archetype’s type parameter.

In the source language, archetypes and type parameters do not present as distinct
concepts, but the compiler uses them internally in different contexts. In diagnostics, an
archetype is printed as the type parameter it represents. To distinguish an archetype
from its type parameter, we’re going to use the notation [[T]].

Archetypes are also used to represent opaque return types (Section 14.1) and opened
existential types (Section 15.1).

A type that might contain archetypes but is not necessarily an archetype itself is called
a contextual type.

Protocol types A protocol type is the declared interface type of a protocol declaration.
Protocol types are nominal types, but they never have generic arguments or parent types,
and so there is exactly one protocol type for a given protocol declaration.

A protocol type is also a special kind of type called a constraint type, described in
Section 5.1. A protocol type represents a conformance requirement to its protocol. A
protocol type is never the type of a value in Swift; the concept of a type-erased container
is represented with an existential type.

Protocol composition types A protocol composition type is a constraint type with
a list of members. On the right hand side of a conformance requirement, protocol
compositions expand into a list of generic requirements, one for each member of the
composition, as described in Section 11.2. The members can include protocol types, a
class type (at most one), and the AnyObject layout constraint:

P & Q

P & AnyObject

SomeClass<Int> & P

62

3.2. Abstract Types

Parameterized protocol types A parameterized protocol type1 stores a protocol type
together with a list of generic arguments. As a constraint type, it expands to a confor-
mance requirement together with one or more same-type requirements. The same-type
requirements constrain the protocol’s primary associated types, which are declared with
a syntax similar to a generic parameter list.

The written representation looks like a generic nominal type, except the named dec-
laration is a protocol, for example Sequence<Int>. Full details appear in Section 5.4.
Parameterized protocol types were introduced in Swift 5.7 [15].

Existential types An existential type wraps a constraint type and represents a value
with some unknown dynamic type satisfying this constraint. The written syntax is
any P, where P is a constraint type. The any keyword was introduced in Swift 5.6 [16].
Prior to Swift 5.6, existential types and constraint types were the same concept, both
in the language and in the compiler implementation. The existential type wrapper was
introduced at the same time as the any keyword. Existential types are described in
Chapter 15.

Existential metatype types An existential metatype represents a metatype value whose
instance type satisfies some constraint type. For example, if P is a protocol type, the
values of the existential metatype any P.Type are the concrete metatypes of types con-
forming to P.

An existential metatype is distinct from the concrete metatype of an existential type,
which is the type with one value, the existential type any P.

Before the introduction of the any keyword, existential metatypes were written as
P.Type, and the concrete metatype of an existential as P.Protocol. This created an
edge case, because for all non-protocol types T, T.Type is always the concrete metatype.

The new spelling for an existential metatype is any P.Type or any (P.Type), while
the concrete metatype for the existential type itself is now written as (any P).Type—
note that the parentheses follow the tree structure of the types.

Dynamic Self types The dynamic Self type appears when a class method declares a
return type of Self. In this case, the object is known to have the same dynamic type
as the base of the method call, which might be a subclass of the method’s class. The
dynamic Self type wraps a class type, which is the static upper bound for the type.

This concept comes from Objective-C, where it is called instancetype. The dynamic
Self type in many ways behaves like a generic parameter, but it is not represented as
one; the type checker and SILGen implement support for it directly.

1The evolution proposal calls them “constrained protocol types”; here we’re going to use the terminology
that appeared in the compiler implementation itself. Perhaps the latter should be renamed to match
the evolution proposal at some point.

63

3. Types

Listing 3.4.: Dynamic Self type example

1 class Base {

2 required init() {}

3

4 func dynamicSelf() -> Self {

5 // the type of ‘self’ in a method returning ‘Self’ is

6 // the dynamic Self type.

7 return self

8 }

9

10 func clone() -> Self {

11 return Self()

12 }

13

14 func invalid1() -> Self {

15 return Base()

16 }

17

18 func invalid2(_: Self) {}

19 }

20

21 class Derived: Base {}

22

23 let y = Derived().dynamicSelf() // y has type ‘Derived’

24 let z = Derived().clone() // z has type ‘Derived’

64

3.3. Sugared Types

Example 3.1. Listing 3.4 demonstrates some of the behaviors of the dynamic Self type.
Two invalid cases are shown; invalid1() is rejected because the type checker cannot
prove that the return type is always an instance of the dynamic type of self, and
invalid2() is rejected because Self appears in contravariant position.

Note that Self has a different interpretation inside a non-class type declaration. In
a protocol declaration, Self is the implicit generic parameter (Section 5.4). In a struct
or enum declaration, Self is the declared interface type (Section 10.1).

3.3. Sugared Types

Sugared generic parameter types were already described in the previous section. Of the
remaining kinds of sugared types, type alias types are defined by the user, and the other
three are built-in to the language.

Type alias types A type alias type represents a reference to a type alias declaration.
It contains an optional parent type, a substitution map, and the substituted underlying
type. The canonical type of a type alias type is the substituted underlying type.

The type alias type’s substitution map is formed in type resolution, from any generic
arguments applied to the type alias type declaration itself, together with the generic
arguments of the base type (Section 10.1). Type resolution applies this substitution
map to the underlying type of the type alias declaration to compute the substituted
underlying type. The type alias type also preserves this substitution map for printing,
and for requirement inference (Section 11.1).

Optional types The optional type is written as T? for some object type T; its canonical
type is Optional<T>.

Array types The array type is written as [E] for some element type E; its canonical
type is Array<E>.

Dictionary types The dictionary type is written as [K: V] for some key type K and
value type V; its canonical type is Dictionary<K, V>.

3.4. Built-in Types

What users think of as fundamental types, such as Int and Bool, are defined as structs in
the standard library. These structs wrap the various built-in types which are understood
directly by the compiler.
Built-in types are not nominal types, so they cannot contain members, cannot have

new members added via extensions, and cannot conform to protocols. Values of built-in

65

3. Types

types are manipulated using special compiler intrinsics. The standard library wraps
built-in types in nominal types, and defines methods and operators on those nominal
types which call the intrinsic functions, thereby presenting the actual interface expected
by users.

For example, the Int struct defines a single stored property named value with type
Builtin.Int. The + operator on Int is implemented by extracting the value stored
property from a pair of Int values, calling the Builtin.sadd with overflow Int64

compiler intrinsic to add them together, and finally, wrapping the resulting Builtin.Int
in a new instance of Int.

Built-in types and their intrinsics are defined in the special Builtin module, which is
a special module constructed by the compiler itself and not built from source code. The
Builtin module is only visible when the compiler is invoked with the -parse-stdlib

frontend flag; the standard library is built with this flag, but user code never interacts
with the Builtin module directly.

3.5. Miscellaneous Types

A handful of special types do not describe the types of values, but are used by the type
checker as part of the type checking process.

Reference storage types A reference storage type is the type of a variable declaration
adorned with the weak, unowned or unowned(unsafe) attribute. The wrapped type
must be a class type, a class-constrained archetype, or class-constrained existential type.
Reference storage types arise as the interface types of variable declarations, and as the
types of SIL instructions. The types of expressions never contain reference storage types.

Placeholder types A placeholder type represents a generic argument to be inferred by
the type checker. The written representation is the underscore “ ”. They can only appear
in a handful of restricted contexts and do not remain after type checking. The expression
type checker replaces placeholder types with type variables, solves the constraint system,
and finally replaces the type variables with their fixed concrete types. For example, here
the interface type of the myPets local variable is inferred as Array<String>:

1 let myPets: Array<_> = ["Zelda", "Giblet"]

Placeholder types were introduced in Swift 5.6 [17].

Unbound generic types Unbound generic types predate placeholder types, and can be
seen as a special case. An unbound generic type is written as a named reference to a
generic type declaration, without generic arguments applied. An unbound generic type

66

3.5. Miscellaneous Types

behaves like a generic nominal type where all generic arguments are placeholder types.
In the example above, the generic nominal type Array< > contains a placeholder type.
The unbound generic type Array could have been used instead:

1 let myPets: Array = ["Zelda", "Giblet"]

One other place where unbound generic types can appear is in the underlying type of a
non-generic type alias, which is shorthand for declaring a generic type alias that forwards
its generic arguments. For example, the following declarations two are equivalent:

1 typealias MyDictionary = Dictionary

2 typealias MyDictionary<Key, Value> = Dictionary<Key, Value>

Unbound generic types are also occasionally useful in diagnostics when you want to print
the name of a type declaration only (like Outer.Inner) without the generic parameters
of its declared interface type (Outer<T>.Inner<U> for example).

Type variable types A type variable represents the future inferred type of an expression
in the expression type checker’s constraint system. The expression type checker builds
the constraint system by walking an expression recursively, assigning new type variables
to the types of sub-expressions and recording constraints between these type variables.
Solving the constraint system can have three possible outcomes:

• One solution—every type variable has exactly one fixed type assignment; the
expression is well-typed.

• No solutions—some constraints could not be solved, indicating erroneous input.

• Multiple solutions—the constraint system is underspecified and some type vari-
ables can have multiple valid fixed type assignments.

In the case of multiple solutions, the type checker uses heuristics to pick the “best”
solution for the entire expression; if none of the solutions are clearly better than the
others, an ambiguity error is diagnosed. Otherwise, we proceed as if the solver only
found the best solution. The final step applies the solution to the expression by replacing
type variables appearing in the types of sub-expressions with their fixed types.
The utmost care must be taken when working with type variables because unlike

all other types, they are not allocated with indefinite lifetime. Type variables live in
the constraint solver arena, which grows and shrinks as the solver explores branches
of the solution space. Types that contain type variables, and other structures that
recursively contain such types, also need to be allocated in the constraint solver arena.
Type variables “escaping” from the constraint solver can crash the compiler in odd ways.
Assertions should be used to rule out type variables from appearing in the wrong places.

67

3. Types

The printed representation of a type variable is $Tn, where n is an incrementing integer
local to the constraint system. One way you can see type variables in action is by passing
the -Xfrontend -debug-constraints compiler flag.

L-value types An l-value type represents the type of an expression appearing on the
left hand side of an assignment operator (hence the “l” in l-value), or as an argument to
an inout parameter in a function call. L-value types wrap an object type which is the
type of the stored value; they print out as @lvalue T where T is the object type, but
this is not valid syntax in the language.

L-value types appear in type-checked assignment expressions and call arguments for
inout parameters. If you’re familiar with C++, you can think of an l-value type as
somewhat analogous to a C++ mutable reference type “T &”—unlike C++ though,
they are not directly visible in the source language.

Error types Error types are returned when type substitution encounters an invalid or
missing conformance (Chapter 7). In this case, the error type wraps the original type,
and prints as the original type to make types coming from malformed conformances
more readable in diagnostics.

The expression type checker also assigns error types to invalid declaration references.
This uses the singleton form of the error type, which prints as <<error type>>. To
avoid user confusion, diagnostics containing the singleton error type should not be emit-
ted. Generally, any expression whose type contains an error type does not need to be
diagnosed, because a diagnostic should have been emitted elsewhere.

3.6. Source Code Reference

Key source files:

• include/swift/AST/Type.h

• include/swift/AST/Types.h

• lib/AST/Type.cpp

Other source files:

• include/swift/AST/TypeNodes.def

• include/swift/AST/TypeVisitor.h

• include/swift/AST/CanTypeVisitor.h

68

https://github.com/apple/swift/tree/main/include/swift/AST/Type.h
https://github.com/apple/swift/tree/main/include/swift/AST/Types.h
https://github.com/apple/swift/tree/main/lib/AST/Type.cpp
https://github.com/apple/swift/tree/main/include/swift/AST/TypeNodes.def
https://github.com/apple/swift/tree/main/include/swift/AST/TypeVisitor.h
https://github.com/apple/swift/tree/main/include/swift/AST/CanTypeVisitor.h

3.6. Source Code Reference

Type class

Represents an immutable, uniqued type. Meant to be passed as a value, it stores a single
instance variable, a TypeBase * pointer.

The getPointer() method returns this pointer. The pointer is not const, however
neither TypeBase nor any of its subclasses define any mutating methods. The pointer
may be nullptr; the default constructor Type() constructs an instance of a null type.
Most methods will crash if called on a null type; only the implicit bool conversion and
getPointer() are safe.

The getPointer() method is only used occasionally, because types are usually passed
as Type and not TypeBase *, and Type overloads operator-> to forward method calls
to the TypeBase * pointer. While most operations on types are actually methods on
TypeBase, a few methods are also defined on Type itself (these are called with “.”
instead of “->”).

Various traversals walk() is a general pre-order traversal where the callback returns a
tri-state value—continue, stop, or skip a sub-tree. Built on top of this are two
simpler variants; findIf() takes a boolean predicate, and visit() takes a void-
returning callback which offers no way to terminate the traversal.

Transformations transformWithPosition(), transformRec(), transform(). As with
the traversals, the first of the three is the most general, and the other two are built
on top. In all three cases, the callback is invoked on all types contained within a
type, recursively. It can either elect to replace a type with a new type, or leave a
type unchanged and instead try to transform any of its child types.

Substitution subst() implements type substitution, which is a particularly common
kind of transform which replaces generic parameters or archetypes with concrete
types (Section 7.5).

Printing print() outputs the string form of a type, with many customization options;
dump() prints the tree structure of a type in an s-expression form. The latter
is extremely useful for invoking from inside a debugger, or ad-hoc print debug
statements.

The Type class explicitly deletes the overloads of operator== and operator!= to make
the choice between pointer and canonical equality explicit. To check pointer equality of
possibly-sugared types, first unwrap both sides with a getPointer() call:

1 if (lhsType.getPointer() == rhsType.getPointer())

2 ...;

69

3. Types

The more common canonical type equality check is implemented by the isEqual()

method on TypeBase:

1 if (lhsType->isEqual(rhsType))

2 ...;

TypeBase class

The root of the type kind hierarchy. Its instances are always uniqued and allocated by
the AST context, either the permanent arena or constraint solver arena. Instances are
usually wrapped in Type. The various subclasses correspond to the different kinds of
types:

• NominalType and its four subclasses:

– StructType,

– EnumType,

– ClassType,

– ProtocolType.

• BoundGenericNominalType and its three subclasses:

– BoundGenericStructType,

– BoundGenericEnumType,

– BoundGenericClassType.

• The structural types TupleType, MetatypeType.

• AnyFunctionType and its two subclasses:

– FunctionType,

– GenericFunctionType.

• GenericTypeParamType, DependentMemberType, the two type parameter types.

• ArchetypeType, and its three subclasses:

– PrimaryArchetypeType,

– OpenedArchetypeType,

– OpaqueArchetypeType.

• The abstract types:

– ProtocolCompositionType,

70

3.6. Source Code Reference

– ParameterizedProtocolType,

– ExistentialType,

– ExistentialMetatypeType,

– DynamicSelfType.

• SugarType and its four subclasses:

– TypeAliasType,

– OptionalType,

– ArrayType,

– DictionaryType.

• BuiltinType and its subclasses (there are a bunch of esoteric ones; only a few are
shown below):

– BuiltinRawPointerType,

– BuiltinVectorType,

– BuiltinIntegerType,

– BuiltinIntegerLiteralType,

– BuiltinNativeObjectType,

– BuiltinBridgeObjectType.

• ReferenceStorageType and its two subclasses:

– WeakStorageType,

– UnownedStorageType.

• Miscellaneous types:

– UnboundGenericType,

– PlaceholderType,

– TypeVariableType,

– LValueType,

– ErrorType.

Each concrete subclass defines some set of static factory methods, usually named get()

or similar, which take the structural components and construct a new, uniqued type of
this kind. There are also getter methods, prefixed with get, which project the structural
components of each kind of type. It would be needlessly duplicative to list all of the
getter methods for each subclass of TypeBase; you can pursue them yourself by looking
at include/swift/AST/Types.h.

71

https://github.com/apple/swift/tree/main/include/swift/AST/Types.h

3. Types

Dynamic casts Subclasses of TypeBase * are identifiable at runtime via the is<>,
castTo<> and getAs<> template methods. To check if a type has a specific kind, use
is<>:

1 Type type = ...;

2

3 if (type->is<FunctionType>())

4 ...;

To conditionally cast a type to a specific kind, use getAs<>, which returns nullptr if
the cast fails:

1 if (FunctionType *funcTy = type->getAs<FunctionType>())

2 ...;

Finally, castTo<> is an unconditional cast which asserts that the type has the required
kind:

1 FunctionType *funcTy = type->castTo<FunctionType>();

These template methods desugar the type if it is a sugared type, and the casted type can
never itself be a sugared type. This is usually what you want; for example if type is the
Swift.Void type alias type, then type->is<TupleType>() returns true, because it is
for all intents and purposes a tuple (an empty tuple), except when printed in diagnostics.

There are also top-level template functions isa<>, dyn_cast<> and cast<> that op-
erate on TypeBase *. Using these with Type is an error; you must explicitly unwrap the
pointer with getPointer(). These casts do not desugar, and permit casting to sugared
types. This is occasionally useful if you need to handle sugared types differently from
canonical types for some reason:

1 Type type = ...;

2

3 if (isa<OptionalType>(type.getPointer()))

4 ...;

Canonical types The getCanonicalType() method outputs a CanType wrapping the
canonical form of this TypeBase *. The isCanonical() method checks if a type is
canonical.

72

3.6. Source Code Reference

Visitors If you need to exhaustively handle each kind of type, the simplest way is to
switch over the kind, which is an instance of the TypeKind enum, like this:

1 Type ty = ...;

2 switch (ty->getKind()) {

3 case TypeKind::Struct: {

4 auto *structTy = ty->castTo<StructType>();

5 ...

6 }

7 case TypeKind::Enum:

8 ...

9 case TypeKind::Class:

10 ...

11 }

However, in most cases it is more convenient to use the visitor pattern instead. You
can subclass TypeVisitor and override various visitKind Type() methods, then hand
the type to the visitor’s visit() method, which performs the switch and dynamic cast
dance above:

1 class MyVisitor: public TypeVisitor<MyVisitor> {

2 public:

3 void visitStructType(StructType *ty) {

4 ...

5 }

6 };

7

8 MyVisitor visitor;

9

10 Type ty = ...;

11 visitor.visit(ty);

The TypeVisitor also defines various methods corresponding to abstract base classes in
the TypeBase hierarchy, so for example you can override visitNominalType() to handle
all nominal types at once.

The TypeVisitor preserves information if it receives a sugared type; for example,
visiting Int? will call visitOptionalType(), while visiting Optional<Int> will call
visitBoundGenericEnumType(). In the common situation where the semantics of your
operation do not depend on type sugar, you can use the CanTypeVisitor template
class instead. Here, the visit() method takes a CanType, so Int? will need to be
canonicalized to Optional<Int> before being passed in.

73

3. Types

Nominal types A handful of methods on TypeBase exist which perform a desugaring
cast to a nominal type (so they will also accept a type alias type or other sugared type),
and return the nominal type declaration, or nullptr if the type isn’t of a nominal kind:

• getAnyNominal() returns the nominal type declaration of UnboundGenericType,
NominalType or BoundGenericNominalType.

• getNominalOrBoundGenericNominal() returns the nominal type declaration of a
NominalType or BoundGenericNominalType.

• getStructOrBoundGenericStruct() returns the type declaration of a StructType
or BoundGenericStructType.

• getEnumOrBoundGenericEnum() returns the type declaration of an EnumType or
BoundGenericEnumType.

• getClassOrBoundGenericClass() returns the class declaration of a ClassType or
BoundGenericClassType.

• getNominalParent() returns the parent type stored by an UnboundGenericType,
NominalType or BoundGenericNominalType.

Recursive properties Various predicates are computed when a type is constructed and
are therefore cheap to check:

• hasTypeVariable() determines whether the type was allocated in the permanent
arena or the constraint solver arena.

• hasArchetype(), hasOpaqueArchetype(), hasOpenedExistential().

• hasTypeParameter().

• hasUnboundGenericType(), hasDynamicSelf(), hasPlaceholder().

• isLValue()—despite the “is” in the name, this is a recursive property and not
the same as ty->is<LValueType>().

Utility operations These encapsulate frequently-useful patterns.

• getOptionalObjectType() returns the type T if the type is some Optional<T>,
otherwise it returns the null type.

• getMetatypeInstanceType() returns the type T if the type is some T.Type, oth-
erwise it returns T.

• mayHaveMembers() answers if this is a nominal type, archetype, existential type
or dynamic Self type.

74

3.6. Source Code Reference

Recovering the AST context All non-canonical types point at their canonical type,
and canonical types point at the AST context.

• getASTContext() returns the singleton AST context from a type.

CanType class

The CanType class wraps a TypeBase * pointer which is known to be canonical. The
pointer can be recovered with the getPointer() method. It forwards various methods
to either Type or TypeBase *. There is an implicit conversion from CanType to Type. In
the other direction, the explicit one-argument constructor CanType(Type) asserts that
the type is canonical; however, most of the time the getCanonicalType() method on
TypeBase is used instead.
The operator== and operator!= operators are used to test CanType for pointer

equality. The isEqual() method described earlier implements canonical equality on
sugared types by first canonicalizing both sides, and then checking the resulting canonical
types for pointer equality. Therefore, the following are equivalent:

1 if (lhsType->isEqual(rhsType)) ...;

2 if (lhsType->getCanonicalType() == rhsType->getCanonicalType()) ...;

The CanType class can be used with the isa<>, cast<> and dyn_cast<> templates.
Instead of returning the actual TypeBase subclass, the latter two return a canonical
type wrapper for that subclass. Every subclass of TypeBase has a corresponding canon-
ical type wrapper; if the subclass is named FooType, the canonical wrapper is named
CanFooType. Canonical type wrappers forward operator-> to the specific TypeBase

subclass, and define methods of their own (called with “.”) which project the known-
canonical components of the type.
For example, FunctionType has a getResult() method returning Type, so the canon-

ical type wrapper CanFunctionType has a getResult() method returning a CanType.
The wrapper methods are not exhaustive, and their use is not required because you can
instead make explicit calls to CanType(Type) or getCanonicalType() after projecting
a type that is known to be canonical.

1 CanType canTy = ...;

2 CanFunctionType canFuncTy = cast<FunctionType>(canTy);

3

4 // method on CanFunctionType: returns CanType(canFuncTy->getResult())

5 CanType canResultTy = canFuncTy.getResult();

6

7 // operator-> forwards to method on FunctionType: returns Type

8 CanType resultTy = CanType(canFuncTy->getResult());

75

3. Types

AnyFunctionType class

This is the base class of FunctionType and GenericFunctionType.

• getParams() returns an array of AnyFunctionType::Param.

• getResult() returns the result type.

• getExtInfo() returns an instance of AnyFunctionType::ExtInfo storing the ad-
ditional non-type attributes.

AnyFunctionType::Param class

This represents a parameter in a function type’s parameter list.

• getPlainType() returns the type of the parameter. If the parameter is variadic
(T...), this is the element type T.

• getParameterType() same as above, but if the parameter is variadic, returns the
type Array<T>.

• isVariadic(), isAutoClosure() are the special behaviors.

• getValueOwnership() returns an instance of the ValueOwnership enum.

ValueOwnership enum class

The possible ownership attributes on a function parameter.

• ValueOwnership::Default

• ValueOwnership::InOut

• ValueOwnership::Shared

• ValueOwnership::Owned

AnyFunctionType::ExtInfo class

This represents the non-type attributes of a function type.

76

4. Declarations

The different kinds of declarations are categorized into a taxonomy. A value declaration
has a name that can be directly referenced from an expression. Each value declaration
also has an interface type. Roughly speaking, this is the type of an expression referencing
the declaration. Most declarations are value declarations, but there are some important
exceptions. Extensions, described in Chapter 12, add members to a type but do not
themselves have names. A top-level code declaration is another kind of declaration that
is not a value declaration; it holds the statements and expressions at the top level of a
source file.

A type declaration is an important kind of value declaration. A type declaration
declares a new type that you can write down in a type annotation; this is the declared
interface type of the type declaration. Since type declarations are value declarations,
they also have an interface type, which is the type of an expression referencing the type
declaration. When a type is used as a value, the type of the value is a metatype. A type
declaration’s interface type is therefore the metatype of its declared interface type.

Struct, enum and class declarations are called nominal type declarations. Protocols
are also nominal type declarations, but they are special enough it is best to think of
them as a separate kind of entity.

The self interface type of a type or extension declaration is the type from which the
self parameter type of a method is derived. In a struct, enum or class declaration, the
self interface type and declared interface type coincide. In a protocol, the self interface
type is the protocol Self type (Section 5.4).

In the following, the nominal type declaration Fish is referenced twice, first as a type
annotation, and then in an expression:

1 struct Fish {}

2

3 let myFish: Fish = Fish()

This is a very simple piece of code, but there’s more going on than seems at first glance.
The first occurrence of Fish is the type annotation for the variable declaration myFish,
so the interface type of myFish becomes the nominal type Fish. The second occurrence
is inside the initial value expression of myFish. The callee of the call expression Fish()

is the type expression Fish, whose type is the metatype Fish.Type. A call of a metatype
is transformed into a call of the init member, which names a constructor declaration.

77

4. Declarations

Table 4.1.: Classifying various entities in our taxonomy

Entity kind Decl? Value decl? Type decl? Decl context?

Module ✓ ✓ ✓ ✓
Source file × × × ✓
Nominal type ✓ ✓ ✓ ✓
Extension ✓ × × ✓
Generic parameter ✓ ✓ ✓ ×
Function ✓ ✓ × ✓
Variable ✓ ✓ × ×
Top-level code ✓ × × ✓
Closure expression × × × ✓
Call expression × × × ×

Constructors are called on an instance of the metatype of a type, and return an instance
of the type. So the initial value expression has the type Fish, which matches the interface
type of myFish. The constructor has the interface type (Fish.Type) -> () -> Fish.

A declaration context is an entity that can contain declarations. Declaration contexts
are distinct from declarations. Module declarations, nominal type declarations, extension
declarations and function declarations are also declaration contexts. Not all declarations
are declaration contexts; variable declarations and generic parameter declarations are
not. Furthermore, some declaration contexts are not declarations. A closure expression
is not a declaration, but it is a declaration context, because the body of a closure
can contain variable, function and type declarations. A source file is another kind of
declaration context that is not a declaration. A summary of the examples so far is shown
in Table 4.1.

Declarations and declaration contexts are nested within each other. The roots in this
hierarchy are module declarations; all other declarations and declaration contexts point
at a parent declaration context. Source files are always immediate children of module
declarations.

A local context is any declaration context that is not a module, source file, type
declaration or extension. Top-level code declarations, function declarations and closure
expressions are three kinds of local contexts we’ve already seen.

The three remaining kinds of local context are subscript declarations, enum element
declarations and initializer contexts:

• Subscripts and enum elements are local contexts, because they contain their pa-
rameter declarations.

• Subscript declarations can also be generic, so they need to contain their generic
parameters.

78

4.1. Type Declarations

• Initializer contexts represent the initial value expression of a variable that is itself
not a child of a local context. This ensures that any declarations appearing in the
initial value expression of a variable are always children of a local context.

There is special terminology for type declarations in different kinds of declaration
contexts:

• A top-level type is an immediate child of a source file.

• A nested type or member type is an immediate child of a nominal type declaration
or an extension.

• A local type is an immediate child of a local context.

Similarly, for functions:

• A top-level function or global function is an immediate child of a source file.

• A method is an immediate child of a nominal type declaration or an extension.

• A local function is an immediate child of a local context.

And finally, for variables:

• A global variable is an immediate child of a source file.

• A property is an immediate child of a nominal type declaration or an extension.

• A local variable is an immediate child of a local context.

4.1. Type Declarations

Struct, enum and class declarations These are the concrete nominal types. The
declared interface type of a non-generic nominal type declaration is a nominal type. If
the nominal type declaration is generic, the declared interface type is a generic nominal
type where the generic arguments are the declaration’s generic parameters.
Concrete nominal types can be nested inside of other declaration contexts, with a few

limitations described in Section 7.4. The declared interface type reflects this nesting.
For example, the declared interface type of Outer.Inner is the generic nominal type
Outer<T>.Inner<U>:

1 struct Outer<T> {

2 struct Inner<U> {}

3 }

Classes can inherit from other classes; Chapter 16 describes how inheritance interacts
with generics.

79

4. Declarations

Protocol declarations The declared interface type of a protocol declaration is the pro-
tocol type P. Protocols are the fourth kind of nominal type, but they behave differently
in many ways, because they do not have concrete instances. Protocol declarations are
described in Chapter 5.4.

Type alias declarations Type aliases assign a new name to an underlying type. The
declared interface type is a type alias type whose canonical type is the underlying type of
the type alias. The special case of type aliases in protocols is discussed in Section 10.3.

Generic parameter declarations Generic parameter declarations appear inside generic
parameter lists of generic declarations. The declared interface type of a generic pa-
rameter declaration is the sugared generic parameter type that prints as the name of
the declaration. The canonical type of this type is the generic parameter type τ d i,
where d is the depth and i is the index. Generic parameter declarations are described
in Chapter 5.

Associated type declarations Associated type declarations appear inside protocols.
The declared interface type of an associated type A is a bound dependent member type
Self.[P]A referencing the declaration of A, with the Self generic parameter of the
protocol as the base type. Associated type declarations are described in Section 5.4.

4.2. Function Declarations

Function declarations Functions can either appear at the top level, inside of a local
context such as another function, or as a member of a type, called a method. If a
function is itself generic or nested inside of a generic context, the interface type is a
generic function type, otherwise it is a function type.

The interface type of of a function is constructed from the interface types of the
function’s parameter declarations, and the function’s return type. If the return type is
omitted, it becomes the empty tuple type (). For methods, this function type is then
wrapped in another level of function type representing the base of the call which becomes
the self parameter of the method.

The self parameter’s type and parameter flags are constructed from the self interface
type of the method’s type declaration, and various attributes of the method:

• If the method is mutating, the self parameter becomes inout.

• If the method returns the dynamic Self type, the self parameter type is wrapped
in the dynamic Self type.

• Finally, if the method is static, the self parameter is wrapped in a metatype.

80

4.2. Function Declarations

Figure 4.1.: Two levels of function application in a method call foo.bar(1, 2)

call expression: Result

self apply expression: (Int, Int) -> ()

declaration reference expression: Foo.bar

declaration reference expression: foo

argument list

integer literal expression: 1

integer literal expression: 2

This can be summarized as follows; note that (Self) parameter list means the self
interface type of the method’s type declaration, together with any additional parameter
flags computed via the above:

Generic? Method? Interface type

× × (Params...) -> Result

✓ × <Sig...> (Params...) -> Result

× ✓ (Self) -> (Params...) -> Result

✓ ✓ <Sig...> (Self) -> (Params...) -> Result

The two levels of function type in the interface type of a method mirror the two-level
structure of a method call expression foo.bar(1, 2), shown in Figure 4.1:

• The self apply expression foo.bar applies the single argument foo to the method’s
self parameter. The type of the self apply expression is the method’s inner
function type.

• The outer call applies the argument list (1, 2) to the inner function type. The
type of the outer call expression is the method’s return type.

Constructor declarations Constructor declarations always appear as members of other
types, and are named init. The interface type of a constructor takes a metatype and
returns an instance of the constructed type, possibly wrapped in an Optional.

Generic? Interface type

× (Self.Type) -> (Params...) -> Self

✓ <Sig...> (Self.Type) -> (Params...) -> Self

81

4. Declarations

Class constructors also have a initializer interface type, used when a subclass initializer
delegates to an initializer in the superclass. The initializer interface type is the same as
the interface type, except it takes a self value instead of a self metatype.

Generic? Initializer interface type

× (Self) -> (Params...) -> Self

✓ <Sig...> (Self) -> (Params...) -> Self

Destructor declarations Destructor declarations cannot have a generic parameter list,
a where clause, or a parameter list. Formally they take no parameters and return ().

Generic? Interface type

× (Self) -> () -> ()

✓ <Sig...> (Self) -> () -> ()

4.3. Storage Declarations

Storage declarations represent the declaration of an l-value. Storage declarations can
have zero or more associated accessor declarations. The accessor declarations are siblings
of the storage declaration in the declaration context hierarchy.

Variable declarations The interface type of a variable is the stored value type, possibly
wrapped in a reference storage type if the variable is declared as weak or unowned. The
value interface type of a variable is the storage type without any wrapping.

For historical reasons, the interface type of a property (a variable appearing inside of
a type) does not include the Self clause, the way that method declarations do.
Variable declarations are always created alongside a pattern binding declaration which

represents the various ways in which variables can be bound to values in Swift. A pattern
binding declaration consists of one or more pattern binding entries. Each pattern binding
entry has a pattern and an optional initial value expression. A pattern declares zero or
more variables.

Example 4.1. A pattern binding declaration with a single entry, where the pattern
declares a single variable:

1 let x = 123

Same as the above, except with a more complex pattern which declares a variable storing
the first element of a tuple while discarding the second element:

1 let (x, _) = (123, "hello")

82

4.3. Storage Declarations

A pattern binding declaration with a single entry, where the pattern declares two vari-
ables x and y:

1 let (x, y) = (123, "hello")

A pattern binding declaration with two entries, where the first pattern declares x and
the second declares y:

1 let x = 123, y = "hello"

A pattern binding declaration with a single entry that does not declare any variables:

1 let _ = ignored()

And finally, two pattern binding declarations, where each one pattern binding declaration
has a single entry declaring a single variable:

1 let x = 123

2 let y = "hello"

Example 4.2. If the pattern binding declaration appears outside of a local context,
each entry must declare at least one variable, so both pattern binding declarations are
rejected here:

1 let _ = 123

2

3 struct S {

4 let _ = "hello"

5 }

Example 4.3. A funny quirk of the pattern grammar is that typed patterns and tuple
patterns do not compose in the way one might think. If “let x: Int” is a typed pattern
declaring a variable x type with annotation Int, and “let (x, y)” is a tuple pattern
declaring two variables x and y, you might expect “let (x: Int, y: Int)” to declare
two variables x and y with type annotations Int and String respectively; what actually
happens is you get a tuple pattern declaring two variables named Int and String that
binds a two-element tuple with labels x and y:

1 let (x: Int, y: String) = (x: 123, y: "hello")

2 print(Int) // huh? prints 123

3 print(String) // weird! prints "hello"

83

4. Declarations

Parameter declarations Functions, enum elements and subscripts can have parameter
lists; each parameter is represented by a parameter declaration. The interface type of a
declaration with a parameter list is built by first computing the interface type of each
parameter. Closure expressions also have parameter lists and thus parent parameter
declarations.

Among other things, the parameter declaration stores the value ownership kind, the
variadic flag, and the @autoclosure attribute. This is in fact the same exact information
encoded in the parameter list of a function type.

Parameter declarations of named declarations can also have argument labels and de-
fault argument expressions, which are not encoded in a function type. These phenomena
are only visible when directly calling a named declaration and not a closure value.

Subscript declarations Subscripts always appear as members of types, with a special
declaration name. The interface type of a subscript is a function type taking the index
parameters and returning the storage type. The value interface type of a subscript is
just the storage type.

For historical reasons, the interface type of a subscript does not include the Self

clause, the way that method declarations do.

Generic? Interface type

× (Indices...) -> Value

✓ <Sig...> (Indices...) -> Value

Accessor declarations The interface type of an accessor depends the accessor kind.
For example, getters return the value, and setters take the new value as a parameter.
Property accessors do not take any other parameters; subscript accessors also take the
subscript’s index parameters. There is a lot more to say about accessors and storage
declarations, but unfortunately, you’ll have to wait for the next book.

4.4. Source Code Reference

Key source files:

• include/swift/AST/Decl.h

• include/swift/AST/DeclContext.h

• lib/AST/Decl.cpp

• lib/AST/DeclContext.cpp

84

https://github.com/apple/swift/tree/main/include/swift/AST/Decl.h
https://github.com/apple/swift/tree/main/include/swift/AST/DeclContext.h
https://github.com/apple/swift/tree/main/lib/AST/Decl.cpp
https://github.com/apple/swift/tree/main/lib/AST/DeclContext.cpp

4.4. Source Code Reference

Other source files:

• include/swift/AST/DeclNodes.def

• include/swift/AST/ASTVisitor.h

• include/swift/AST/ASTWalker.h

Decl class

Base class of declarations. Figure 4.2 shows various subclasses, which correspond to the
different kinds of declarations defined previously in this chapter.

Instances are always allocated in the permanent arena of the ASTContext, either when
the declaration is parsed or synthesized. The top-level isa<>, cast<> and dyn_cast<>

template functions support dynamic casting from Decl * to any of its subclasses.

• getDeclContext() returns the parent DeclContext of this declaration.

• getInnermostDeclContext() if this declaration is also a declaration context, re-
turns the declaration as a DeclContext, otherwise returns the parent DeclContext.

• getASTContext() returns the singleton AST context from a declaration.

Visitors If you need to exhaustively handle each kind of declaration, the simplest way
is to switch over the kind, which is an instance of the DeclKind enum, like this:

1 Decl *decl = ...;

2 switch (decl->getKind()) {

3 case DeclKind::Struct: {

4 auto *structDecl = decl->castTo<StructDecl>();

5 ...

6 }

7 case DeclKind::Enum:

8 ...

9 case DeclKind::Class:

10 ...

11 }

However, just as with types, is can be more convenient to use the visitor pattern. You
can subclass ASTVisitor and override various visitKind Decl() methods, then hand
the declaration to the visitor’s visit() method, which performs the switch and dynamic
cast dance above:

85

https://github.com/apple/swift/tree/main/include/swift/AST/DeclNodes.def
https://github.com/apple/swift/tree/main/include/swift/AST/ASTVisitor.h
https://github.com/apple/swift/tree/main/include/swift/AST/ASTWalker.h

4. Declarations

Figure 4.2.: The Decl class hierarchy

Decl

ValueDecl

TypeDecl

NominalTypeDecl

StructDecl

EnumDecl

ClassDecl

ProtocolDecl

TypeAliasDecl

AbstractTypeParamDecl

GenericTypeParamDecl

AssociatedTypeDecl

AbstractFunctionDecl

FuncDecl

AccessorDecl

ConstructorDecl

DestructorDecl

AbstractStorageDecl

VarDecl

ParamDecl

SubscriptDecl

ExtensionDecl

86

4.4. Source Code Reference

1 class MyVisitor: public ASTVisitor<MyVisitor> {

2 public:

3 void visitStructDecl(StructType *decl) {

4 ...

5 }

6 };

7

8 MyVisitor visitor;

9

10 Decl *decl = ...;

11 visitor.visit(decl);

The ASTVisitor also defines various methods corresponding to abstract base classes in
the Decl hierarchy, so for example you can override visitNominalTypeDecl() to handle
all nominal type declarations at once. The ASTVisitor is more general than just visiting
declarations; it also supports visiting statements, expressions, and type representations.

A more elaborate form is implemented by the ASTWalker. While the visitor visits a
single declaration, the walker traverses nested declarations, statements and expressions
for you in a pre-order walk.

ValueDecl class

Base class of named declarations.

• getDeclName() returns the declaration’s name.

• getInterfaceType() returns the declaration’s interface type.

TypeDecl class

Base class of type declarations.

• getDeclaredInterfaceType() returns the type of an instance of this declaration.

NominalTypeDecl class

Base class of nominal type declarations. Also a DeclContext.

• getSelfInterfaceType() returns the type of the self value inside the body of
this declaration. Different from the declared interface type for protocols, where
the declared interface type is a nominal but the declared self type is the generic
parameter Self.

87

4. Declarations

• getDeclaredType() returns the type of an instance of this declaration, without
generic arguments. If the declaration is generic, this is an unbound generic type.
If this declaration is not generic, this is a nominal type. This is occasionally used
in diagnostics instead of the declared interface type, when the generic parameter
types are irrelevant.

TypeAliasDecl class

A type alias declaration. Also a DeclContext.

• getDeclaredInterfaceType() returns the underlying type of the type alias dec-
laration, wrapped in type alias type sugar.

• getUnderlyingType() returns the underlying type of the type alias declaration,
without wrapping it in type alias type sugar.

AbstractFunctionDecl class

Base class of function-like declarations. Also a DeclContext.

• getImplicitSelfDecl() returns the implicit self parameter, if there is one.

• getParameters() returns the function’s parameter list.

• getMethodInterfaceType() returns the type of a method without the Self clause.

• getResultInterfaceType() returns the return type of this function or method.

ParameterList class

The parameter list of AbstractFunctionDecl, EnumElementDecl or SubscriptDecl.

• size() returns the number of parameters.

• get() returns the ParamDecl at the given index.

ConstructorDecl class

Constructor declarations.

• getInitializerInterfaceType() returns the initializer interface type, used when
type checking super.init() delegation.

AbstractStorageDecl class

Base class for storage declarations.

88

4.4. Source Code Reference

• getValueInterfaceType() returns the type of the stored value, without weak or
unowned storage qualifiers.

DeclContext class
Base class for declaration contexts. The top-level isa<>, cast<> and dyn_cast<> tem-
plate functions also support dynamic casting from a DeclContext * to any of its sub-
classes.
There are a handful of subclasses which are not also subclasses of Decl *:

• ClosureExpr.

• FileUnit and its various subclasses, such as SourceFile.

• A few other less interesting ones you can find in the source.

Utilities for understanding the nesting of declaration contexts:

• getAsDecl() if declaration context is also a declaration, returns the declaration,
otherwise returns nullptr.

• getParent() returns the parent declaration context.

• isModuleScopeContext() returns true if this is a ModuleDecl or FileUnit.

• isTypeContext() returns true if this is a nominal type declaration or an extension.

• isLocalContext() returns true if this is not a module scope context or type
context.

• getParentModule() returns the module declaration at the root of the hierarchy.

• getModuleScopeContext() returns the innermost parent which is a ModuleDecl

or FileUnit.

• getParentSourceFile() returns the innermost parent which is a source file, or
nullptr if this declaration context was not parsed from source.

• getInnermostDeclarationDeclContext() returns the innermost parent which is
also a declaration, or nullptr.

• getInnermostDeclarationTypeContext() returns the innermost parent which is
also a nominal type or extension, or nullptr.

Operations on type contexts:

• getSelfNominalDecl() returns the nominal type declaration if this is a type con-
text, or nullptr.

89

4. Declarations

• getSelfStructDecl() as above but result is a StructDecl * or nullptr.

• getSelfEnumDecl() as above but result is a EnumDecl * or nullptr.

• getSelfClassDecl() as above but result is a ClassDecl * or nullptr.

• getSelfProtocolDecl() as above but result is a ProtocolDecl * or nullptr.

• getDeclaredInterfaceType() delegates to the method on NominalTypeDecl or
ExtensionDecl as appropriate.

• getSelfInterfaceType() is similar.

Generics-related methods on DeclContext are described in Section 5.5.

90

5. Generic Declarations

A generic declaration is a declaration with a generic parameter list. The following kinds
of declarations can be generic:

• classes, structs and enums,

• type aliases,

• functions,

• constructors,

• subscripts.

Generic type aliases were introduced in Swift 3 [18]. Generic subscripts were introduced
in Swift 4 [19].

The parsed generic parameter list of a declaration is the subset of generic parameter
declarations written in source only, with the <...> syntax following the declaration
name. The declaration’s generic parameter list includes the parsed generic parameter
list together with any implicit generic parameters:

1. Functions and subscripts may have a parsed generic parameter list, or they can
declare opaque parameters with the some keyword, or both (Section 5.3).

2. Protocols always have a single implicit Self generic parameter, and no parsed
generic parameter list (Section 5.4).

3. Extensions always have an implicit set of generic parameters inherited from the
extended type, and no parsed generic parameter list (Chapter 12).

Parsed generic parameters, the protocol Self type, and the implicit generic parameters
of an extension all have names that remain in scope for the entire source range of the
generic declaration. Generic parameters introduced by opaque parameter declarations
are unnamed; only the value declared by the opaque parameter has a name.

All generic declarations are declaration contexts, because they contain their generic
parameter declarations. A generic context is a declaration context where at least one
parent context is a generic declaration. Note the subtle distinction in the meaning of
“generic” when talking about declarations and declaration contexts; a declaration is

91

5. Generic Declarations

generic only if it has generic parameters of its own, whereas a declaration context being
a generic context is a transitive properly inherited from the parent context.
Inside a generic context, unqualified name lookup will find all outer generic parameters.

Each generic parameter is therefore uniquely identified within a generic context by its
depth and index :

• The depth identifies a specific generic declaration, starting from zero for the top-
level generic declaration and incrementing for each nested generic declaration.

• The index identifies a generic parameter within a single generic parameter list.

The declared interface type of a generic parameter declaration is a sugared type that
prints as the generic parameter name. The canonical type of this type only stores the
depth and index. The notation for a canonical generic parameter type is τ d i, where d
is the depth and i is the index.

Example 5.1. Listing 5.1 declares a LinkedList type with a single generic parameter
named Element, and a mapReduce() method with two generic parameters named T and
A. All three generic parameters are visible from inside the method:

Name Depth Index Canonical type

Element 0 0 τ 0 0

T 1 0 τ 1 0

A 1 1 τ 1 1

5.1. Constraint Types

A generic requirement adds new capabilities to a generic parameter type, by restricting
the possible substituted concrete types to those that provide this capability. The next
section will introduce the trailing where clause syntax for stating generic requirements
in a fully general way. Before doing that, we’ll take a look at the simpler mechanism of
stating a constraint type in the inheritance clause of a generic parameter declaration:

1 func allEqual<T: Equatable>(_ elements: [T]) {...}

A constraint type is one of the following:

1. A protocol type, like Hashable.

2. A parameterized protocol type, like Sequence<String> (Section 5.4).

3. A protocol composition, like ShapeProtocol & MyClass. Protocol compositions
were originally just compositions of protocol types, but they can include class types
as of Swift 4 [20].

92

5.1. Constraint Types

Listing 5.1.: Two nested generic declarations

1 enum LinkedList<Element> {

2 case none

3 indirect case entry(Element, LinkedList<Element>)

4

5 func mapReduce<T, A>(_ f: (Element) -> T,

6 _ m: (A, T) -> A,

7 _ a: A) -> A {

8 switch self {

9 case .none:

10 return a

11 case .entry(let x, let xs):

12 return m(xs.mapReduce(f, m, a), f(x))

13 }

14 }

4. A class type, like NSObject.

5. The AnyObject layout constraint, which restricts the possible concrete types to
those represented as a single reference-counted pointer.

6. The empty protocol composition, written Any. Writing Any in a generic parameter’s
inheritance clause is pointless, but it is allowed for completeness.

Constraint types can appear in various positions:

1. In the inheritance clause of a generic parameter declaration, which is the focus of
this section.

2. On the right hand side of a conformance, superclass or layout requirement in a
where clause, which you will see shortly.

3. In the inheritance clauses of protocols and associated types (Section 5.4).

4. Following the some keyword in an opaque parameter (Section 5.3) or return type
(Chapter 14).

5. Following the any keyword in an existential type (Chapter 15). A single class type
cannot be the constraint type of an existential; any NSObject is just written as
NSObject. Existential types where the constraint type is AnyObject and Any can
also be written without the any keyword.

93

5. Generic Declarations

Listing 5.2.: The constraint type of B in open(box:) refers to C

1 class Box<Contents> {

2 var contents: Contents

3 }

4

5 func open<B: Box<C>, C>(box: B) -> C {

6 return box.contents

7 }

8

9 struct Vegetables {}

10 class FarmBox: Box<Vegetables> {}

11

12 let vegetables: Vegetables = open(box: FarmBox())

Example 5.2. Listing 5.2 exhibits a generic parameter whose constraint type references
another generic parameter visible from the current scope. The generic parameter C is
visible in the entire declaration of open(box:), including the generic parameter list.

5.2. Requirements

A constraint type in the inheritance clause of a generic parameter declaration is syntax
sugar for a where clause with a single entry whose subject type is the generic parameter
type:

1 struct Set<Element: Hashable> {...}

2 struct Set<Element> where Element: Hashable {...}

The requirements in a where clause state the subject type explicitly, allowing stating
requirements on dependent member types, for example:

1 func isSorted<S: Sequence>(_: S) where S.Element: Comparable {...}

Another generalization over generic parameter inheritance clauses is that where clauses
can define same-type requirements:

1 func merge<S: Sequence, T: Sequence>(_: S, _: T) -> [S.Element]

2 where S: Comparable, S.Element == T.Element {...}

94

5.2. Requirements

Figure 5.1.: Types and requirements, at the syntactic and semantic layers

requirement representation requirement

type representation type

contains

resolves to

contains

resolves to

Formally, a where clause is a list of one or more requirement representations. There are
three kinds of requirement representations, with the first two kinds storing a pair of type
representations, and the third storing a type representation and layout constraint:

1. Constraint requirement representations, written as T: C, where T and C are
type representations, called the subject type and constraint type, respectively.

2. Same-type requirement representations, written as T == U, where T and U

are type representations.

3. Layout requirement representations, written as T: L where L is a layout
constraint. The only type of layout constraint which can be written in the source
language is AnyObject, but this is actually parsed as a constraint requirement
representation. Bona-fide layout requirement representations only appear within
the @ specialize attribute.

Just as type resolution resolves type representations to types, requirement resolution
resolves requirement representations to requirements. A requirement is the equivalent of
a requirement representation at the semantic layer; requirements store types instead of
type representations. Figure 5.1 shows the correspondence.
Requirement resolution resolves each type representation to a type, and computes

the requirement kind. The requirement kind encodes more detail than the requirement
representation kind:

• Conformance requirements state that a type must conform to a protocol, pro-
tocol composition or parameterized protocol type.

• Superclass requirements state that a type must either equal to be a subclass
of the superclass type.

• Layout requirements state that a type must satisfy a layout constraint.

• Same-type requirements state that two interface types are reduced-equal (this
concept was first introduced in Chapter 3 and will be detailed in Section 6.3).

95

5. Generic Declarations

Constraint requirement representations resolve to conformance, superclass and layout
requirements; the exact kind of requirement is only known after type resolution resolves
the constraint type by performing name lookups. Same-type requirement representations
always resolve to same-type requirements.
The simpler syntax introduced in the previous section, where a constraint type can

be written in the inheritance clause of a generic parameter declaration, also resolves
to a requirement. The requirement’s subject type is the generic parameter type. The
requirement kind is always a conformance, superclass or layout requirement, never a
same-type requirement.

History The where clause syntax used to be part of the generic parameter list itself,
but was moved to the modern “trailing” form in Swift 3 [21]. Implementation limitations
prevented where clause requirements from constraining outer generic parameters until
Swift 3. Once these implementation difficulties were solved, it no longer made sense
to restrict a where clause to appear only on a declaration that has its own generic
parameter list; this restriction was lifted in Swift 5.3 [22], allowing any declaration in a
generic context to declare a where clause.
For example, the following became valid:

1 enum LinkedList<Element> {

2 ...

3

4 func sum() -> Element where Element: AdditiveArithmetic {...}

5 }

There is no semantic distinction between attaching a where clause to a member of a
type, or moving the member to a constrained extension, so the above is equivalent to
the following:

1 extension LinkedList where Element: AdditiveArithmetic {

2 func sum() -> Element {...}

3 }

Unfortunately, due to historical quirks in the name mangling scheme, the above is not
an ABI-compatible transformation.

Protocol requirements There is still one situation where constraining outer generic
parameters is prohibited, for usability reasons. The value requirements of a protocol
(properties, subscripts and methods) cannot constrain Self or its associated types in
their where clause. The reason is that this value requirements must be fulfilled by all
concrete conforming types. If a value requirement’s where clause imposed additional

96

5.3. Opaque Parameters

constraints on Self, it would be impossible for a concrete type which did not otherwise
satisfy those constraints to declare a witness for this value requirement. Rather than
allow defining a protocol which cannot be conformed to, the type checker diagnoses an
error.

Example 5.3. The following protocol attempts to define an Element associated type
with no requirements, and a minElement()method which requires that Element conform
to the Comparable protocol:

1 protocol SetProtocol {

2 associatedtype Element

3

4 func minElement() -> Element where Element: Comparable

5 }

This is not allowed, because there is no way to implement the minElement() requirement
in a concrete conforming type whose Element type is not Comparable. One way to fix
the error is to move the where clause from the protocol method to the associated type,
which would instead impose the requirement on all conforming types.

5.3. Opaque Parameters

In the type of a function or subscript parameter, the some keyword declares an opaque
parameter type. The some keyword is followed by a constraint type. This introduces an
unnamed generic parameter, and the constraint type imposes a conformance, superclass
or layout requirement on this generic parameter.

If a declaration has both a parsed generic parameter list and opaque parameters, the
opaque parameters have the same depth as the parsed generic parameters, and appear
after the parsed generic parameters in index order.
Opaque parameter types are unnamed, and therefore are not visible to type resolution.

In particular, there is no way to refer to an opaque parameter type within the function’s
where clause, or from a type annotation on a declaration nested in the function’s body.
From expression context however, the type of an opaque parameter can be obtained via
the built-in type(of:) pseudo-function,1 which produces a metatype value. This allows
for invoking static methods and such.

Example 5.4. These two definitions are equivalent:

1 func merge<E>(_: some Sequence<E>, _: some Sequence<E>) -> [E] {}

2 func merge<E, S: Sequence<E>, T: Sequence<E>>(_: S, _: T) -> [E] {}

1It looks like a function call, but the type checking behavior of type(of:) cannot be described by a
Swift function type; it is not a real function.

97

5. Generic Declarations

Listing 5.3.: A protocol declaration with a primary associated type which is then used
as a parameterized protocol type

1 protocol IteratorProtocol<Element> {

2 associatedtype Element

3 mutating func next() -> Element?

4 }

5

6 // The first declaration is equivalent to the second:

7 func sumOfSquares<I: IteratorProtocol<Int>>(_: I) -> Int {...}

8

9 func sumOfSquares<I: IteratorProtocol>(_: I) -> Int

10 where I.Element == Int {...}

The constraint types here are parameterized protocol types, which are described in the
next section.

Opaque parameter declarations were introduced in Swift 5.7 [23]. Note that some

appearing in the return type of a function declares an opaque return type, which is a
related but quite different feature (Chapter 14).

5.4. Protocol Declarations

Protocols have an implicit generic parameter list with a single generic parameter named
Self. Conceptually the Self type stands in for the concrete conforming type.

Protocols cannot be nested inside any declaration context other than a source file;
structs, classes and enums cannot be nested inside of protocols. This restriction is
discussed in Section 7.4.

Protocols can specify generic requirements on the Self type and its associated types,
using similar syntax to other generic declarations. The type checker ensures that these
requirements are satisfied by any concrete type conforming to the protocol.

Primary associated types A protocol can declare a list of primary associated types with
a syntax resembling a generic parameter list. While generic parameter lists introduce new
generic parameter declarations, the entries in the primary associated type list reference
existing associated types declared in the protocol’s body. A protocol with primary
associated types can be used as a parameterized protocol type.

98

5.4. Protocol Declarations

As a constraint type, a parameterized protocol type is equivalent to a conformance
requirement between the subject type and the protocol, together with one or more same-
type requirements. The same-type requirements relate the primary associated types of
the subject type with the arguments of the parameterized protocol type.

Example 5.5. Listing 5.3 shows the standard library’s iterator protocol, which defines
a single primary associated type, together with a use of the protocol as a parameterized
protocol type.

Parameterized protocol types and primary associated types were added to the language
in Swift 5.7 [15]. This desugaring will receive a more formal treatment in Section 11.2.

Associated type requirements Associated types can state one or more constraint types
in their inheritance clause, in addition to an optional where clause. Constraint types in
the inheritance clause resolve to requirements whose subject type is the associated type
declaration’s declared interface type—which you might recall is the dependent member
type Self.[P]A. where A is an associated type declaration in some protocol P. The
standard library Sequence protocol demonstrates all of these features:

1 protocol Sequence<Element> {

2 associatedtype Iterator: IteratorProtocol

3 associatedtype Element where Iterator.Element == Element

4

5 func makeIterator() -> Iterator

6 }

The conformance requirement on Iterator could have been written with a where clause
as well:

1 associatedtype Iterator where Iterator: IteratorProtocol

Finally, a where clause can be attached to the protocol itself; there is no semantic
difference between that and attaching it to an associated type:

1 protocol Sequence where Iterator: IteratorProtocol,

2 Iterator.Element == Element {...}

Unlike generic parameters, associated type inheritance clauses allow multiple entries,
separated by commas. This is effectively equivalent to a single inheritance clause entry
containing a protocol composition:

1 associatedtype Data: Codable & Hashable

2 associatedtype Data: Codable, Hashable

99

5. Generic Declarations

Unqualified lookup inside protocols Within the entire source range of the protocol
declaration, unqualified references to associated types, like Element and Iterator above,
resolve to their declared interface type. This is a shorthand for accessing the associated
type as a member type of the protocol Self type. The Sequence protocol above could
instead have been declared as follows:

1 protocol Sequence where Self.Iterator: IteratorProtocol,

2 Self.Iterator.Element == Self.Element {...}

Protocol inheritance clauses Constraint types appearing in the protocol’s inheritance
clause become generic requirements on Self in the same manner that constraint types
in generic parameter inheritance clauses become requirements on the generic parameter
type. Requirements on Self are imposed by the conformance checker on concrete types
conforming to the protocol.
If the constraint type is another protocol, we call the protocol stating the requirement

the derived protocol and the protocol named by the constraint type the base protocol.
The derived protocol is said to inherit from (or sometimes, refine) the base protocol.
Protocol inheritance can be observed in two ways; first, every concrete type conforming
to the derived protocol must also conform to the base protocol. Second, qualified name
lookup will search through inherited protocols when the lookup begins from the derived
protocol or one of its concrete conforming types.
For example, the standard library’s Collection protocol inherits from Sequence,

therefore any concrete type conforming Collection must also conform to Sequence.
If some type parameter T is known to conform to Collection, members of both the
Collection and Sequence protocols will be visible to qualified name lookup on a value
of type T.

1 protocol Collection: Sequence {...}

Protocols can restrict their conforming types to those with a reference-counted pointer
representation by stating an AnyObject layout constraint:

1 protocol BoxProtocol: AnyObject {...}

Protocols can also impose a superclass requirement on their conforming types:

1 class Plant {}

2 class Animal {}

3 protocol Duck: Animal {}

4 class MockDuck: Plant, Duck {}

5 // error: MockDuck is not a subclass of Animal

100

5.5. Source Code Reference

Just like with protocol inheritance, qualified name lookup understands a superclass in a
protocol’s inheritance clause, making the members of the superclass visible to all lookups
that look into the protocol.

A protocol is class-constrained if the Self: AnyObject requirement can be proven
from its inheritance clause; either directly stated, implied by a superclass requirement,
or inherited from another protocol.

History In older releases of Swift, protocols could only constrain associated types by
writing a constraint type in the associated type’s inheritance clause, which limited the
kinds of requirements that could be imposed on the concrete conforming type. The
general trailing where clause syntax on associated types and protocols were introduced
in Swift 4 [24].

Another important generalization was allowing an associated type to conform to the
same protocol that it appears in, either directly or indirectly. For example, the SwiftUI
View protocol has a Body associated type that itself conforms to View:

1 protocol View {

2 associatedtype Body: View

3

4 var body: Body { get }

5 }

The ability to declare a so-called recursive conformance was introduced in Swift 4.1 [25].
This feature has some profound implications. In particular, it means that a generic
signature with a conformance to a protocol such as the above has an infinite number of
type parameters; for example, consider <T where T: View>:

1 T

2 T.Body

3 T.Body.Body

4 T.Body.Body.Body

5 ...

5.5. Source Code Reference

Key source files:

• include/swift/AST/Decl.h

• include/swift/AST/DeclContext.h

101

https://github.com/apple/swift/tree/main/include/swift/AST/Decl.h
https://github.com/apple/swift/tree/main/include/swift/AST/DeclContext.h

5. Generic Declarations

• include/swift/AST/GenericParamList.h

• lib/AST/Decl.cpp

• lib/AST/DeclContext.cpp

• lib/AST/GenericParamList.cpp

Other source files:

• include/swift/AST/Types.h

• lib/AST/NameLookup.cpp

DeclContext class
See also Section 2.1, Section 4.4 and Section 6.5.

• isGenericContext() answers if this declaration context or one of its parent con-
texts has a generic parameter list.

• isInnermostContextGeneric() answers if this declaration context is a generic
context with its own generic parameter list, that is, if its declaration is a generic
declaration.

GenericContext class
Base class for declarations which can be generic. See also Section 6.5.

• getParsedGenericParams() returns the declaration’s parsed generic parameter
list, or nullptr.

• getGenericParams() returns the declaration’s full generic parameter list, which
includes any implicit generic parameters. Evaluates a GenericParamListRequest.

• isGeneric() answers if this declaration has a generic parameter list.

• getGenericContextDepth() returns the depth of the innermost generic parame-
ter list, or (unsigned)-1 if neither this declaration nor any outer declaration is
generic.

• getTrailingWhereClause() returns the trailing where clause, or nullptr.

Trailing where clauses are not preserved in serialized generic contexts. Except when
actually building the generic signature, most code uses getGenericSignature() from
Section 6.5 instead.

GenericParamList class
A generic parameter list.

102

https://github.com/apple/swift/tree/main/include/swift/AST/GenericParamList.h
https://github.com/apple/swift/tree/main/lib/AST/Decl.cpp
https://github.com/apple/swift/tree/main/lib/AST/DeclContext.cpp
https://github.com/apple/swift/tree/main/lib/AST/GenericParamList.cpp
https://github.com/apple/swift/tree/main/include/swift/AST/Types.h
https://github.com/apple/swift/tree/main/lib/AST/NameLookup.cpp

5.5. Source Code Reference

• getParams() returns an array of generic parameter declarations.

• getOuterParameters() returns the outer generic parameter list, linking multiple
generic parameter lists for the same generic context. Only used for extensions of
nested generic types.

GenericParamListRequest class

This request creates the full generic parameter list for a declaration. Kicked off from
GenericContext::getGenericParams().

• For protocols, this creates the implicit Self parameter.

• For functions and subscripts, calls createOpaqueParameterGenericParams() to
walk the formal parameter list and look for OpaqueTypeReprs.

• For extensions, calls createExtensionGenericParams() which clones the generic
parameter lists of the extended nominal itself and all of its outer generic contexts,
and links them together via GenericParamList::getOuterParameters().

GenericTypeParamDecl class

A generic parameter declaration.

• getDepth() returns the depth of the generic parameter declaration.

• getIndex() returns the index of the generic parameter declaration.

• getName() returns the name of the generic parameter declaration.

• getDeclaredInterfaceType() returns the non-canonical generic parameter type
for this declaration.

• isOpaque() answers if this generic parameter is associated with an opaque param-
eter.

• getOpaqueTypeRepr() returns the associated OpaqueReturnTypeRepr if this is an
opaque parameter, otherwise nullptr.

• getInherited() returns the generic parameter declaration’s inheritance clause.

Inheritance clauses are not preserved in serialized generic parameter declarations.
Requirements stated on generic parameter declarations are part of the corresponding
generic context’s generic signature, so except when actually building the generic signa-
ture, most code uses getGenericSignature() on Section 6.5 instead.

GenericTypeParamType class

A generic parameter type.

103

5. Generic Declarations

• getDepth() returns the depth of the generic parameter declaration.

• getIndex() returns the index of the generic parameter declaration.

• getName() returns the name of the generic parameter declaration, only if this is a
non-canonical type.

TrailingWhereClause class

The syntactic representation of a trailing where clause.

• getRequirements() returns an array of RequirementRepr.

RequirementRepr class

The syntactic representation of a requirement in a trailing where clause.

• getKind() returns a RequirementReprKind.

• getFirstTypeRepr() returns the first TypeRepr of a same-type requirement.

• getSecondTypeRepr() returns the second TypeRepr of a same-type requirement.

• getSubjectTypeRepr() returns the first TypeRepr of a constraint or layout re-
quirement.

• getConstraintTypeRepr() returns the second TypeRepr of a constraint require-
ment.

• getLayoutConstraint() returns the layout constraint of a layout requirement.

RequirementReprKind enum class

• RequirementRepr::TypeConstraint

• RequirementRepr::SameType

• RequirementRepr::LayoutConstraint

WhereClauseOwner class

Represents a reference to some set of requirement representations which can be resolved
to requirements, for example a trailing where clause. This is used by various requests,
such as the RequirementRequest below, and the InferredGenericSignatureRequest

in Section 11.4.

104

5.5. Source Code Reference

• getRequirements() returns an array of RequirementRepr.

• visitRequirements() resolves each requirement representation and invokes a call-
back with the RequirementRepr and resolved Requirement.

RequirementRequest class

Request which can be evaluated to resolve a single requirement representation in a
WhereClauseOwner. Used by WhereClauseOwner::visitRequirements().

ProtocolDecl class

A protocol declaration.

• getTrailingWhereClause() returns the protocol where clause, or nullptr.

• getAssociatedTypes() returns an array of all associated type declarations in the
protocol.

• getPrimaryAssociatedTypes() returns an array of all primary associated type
declarations in the protocol.

• getInherited() returns the parsed inheritance clause.

Trailing where clauses and inheritance clauses are not preserved in serialized protocol
declarations. Except when actually building the requirement signature, most code uses
getRequirementSignature() from Section 6.5 instead.
The last four utility methods operate on the requirement signature, so are safe to use

on deserialized protocols:

• getInheritedProtocols() returns an array of all protocols directly inherited by
this protocol, computed from the inheritance clause.

• inheritsFrom() determines if this protocol inherits from the given protocol, pos-
sibly transitively.

• getSuperclass() returns the protocol’s superclass type.

• getSuperclassDecl() returns the protocol’s superclass declaration.

AssociatedTypeDecl class

An associated type declaration.

• getTrailingWhereClause() returns the associated type’s trailing where clause,
or nullptr.

105

5. Generic Declarations

• getInherited() returns the associated type’s inheritance clause.

Trailing where clauses and inheritance clauses are not preserved in serialized associated
type declarations. Requirements on associated types are part of a protocol’s requirement
signature, so except when actually building the requirement signature, most code uses
getRequirementSignature() from Section 6.5 instead.

106

6. Generic Signatures

We’ve now seen all the syntactic building blocks that go into constructing the generic
signature of a generic context. Each level of generic context nesting can introduce new
generic parameters or requirements, so the generic signature collects information from
each outer generic declaration. This records in one place a complete description of a
generic context:

• A list of all visible generic parameters, including outer parameters. This includes
generic parameters explicitly defined in source, as well as those generic parameters
implicitly introduced by opaque parameter declarations.

• A list of all generic requirements that apply to these generic parameters, which
includes those from outer declarations. We’ve seen three syntactic forms that define
requirements so far: generic parameter inheritance clauses, trailing where clauses,
and opaque parameters. A fourth and final mechanism, requirement inference, is
described later in Section 11.1.

The -debug-generic-signatures frontend flag prints the generic signature of each
declaration as it is being type checked. In debug output, the printed representation of a
generic signature resembles the language syntax; we’re going to use this written notation
throughout when talking about generic signatures:

<A, B, C, ...︸ ︷︷ ︸
generic parameters

where A: P, B == A.[P]T, ...>︸ ︷︷ ︸
requirements

Example 6.1. Listing 6.1 shows three generic declarations and the compiler output
from the -debug-generic-signatures flag.

The requirements in a generic signature are constructed from syntactic representations,
but they do not always look like the requirements written by the user. The requirements
in a generic signature satisfy certain invariants and are sorted by comparing their subject
types. The type parameter order is introduced in Section 6.2. The multi-step process
for transforming user-written requirements into the correct minimal form that appears
in a generic signature is described in Chapter 11. For now though, we’re just going to
assume you’re working with an existing generic signature that was given to you by the
type checker or some other part of the compiler.

107

6. Generic Signatures

Listing 6.1.: Example program and -debug-generic-signatures output

1 struct Outer<T: Sequence> {

2 struct Inner<U> {

3 func transform() -> (T, U) where T.Element == U {

4 ...

5 }

6 }

7 }

1 debug.(file).Outer@debug.swift:1:8

2 Generic signature: <T where T : Sequence>

3

4 debug.(file).Outer.Inner@debug.swift:2:10

5 Generic signature: <T, U where T : Sequence>

6

7 debug.(file).Outer.Inner.transform()@debug.swift:3:10

8 Generic signature: <T, U where T : Sequence, U == T.[Sequence]Element>

Canonical signatures Generic signatures are immutable and uniqued, so two generic
signatures with the same structure and the same sugared types are pointer-equal. A
generic signature is canonical if all listed generic parameter types are canonical, and any
types appearing in requirements are canonical. A canonical signature is computed from
an arbitrary generic signature by replacing any sugared types appearing in the signa-
ture with canonical types. Two generic signatures are canonical-equal if their canonical
signatures are pointer-equal.

Example 6.2. These two declarations state their requirements in different ways, and
you might even spot that the second one has a redundant requirement:

1 func allEqual1<T: Sequence<U.Element>, U: Sequence> -> Bool {}

2

3 func allEqual2<A, B>(_: A, _: B) -> Bool

4 where A: Sequence,

5 B: Sequence,

6 B.Element == A.Element,

7 A.Iterator: IteratorProtocol {}

The requirements of both allEqual1() and allEqual2() reduce to the same form in
their generic signatures.

108

6.1. Requirement Signatures

The first declaration’s generic signature:

<T, U where T: Sequence, U: Sequence,

T.[Sequence]Element == U.[Sequence]Element>

The second declaration’s generic signature:

<A, B where A: Sequence, B: Sequence,

A.[Sequence]Element == B.[Sequence]Element>

The two generic signatures only differ by type sugar; namely, they use the corresponding
sugared generic parameter types from their declaration. This means they are not pointer-
equal, but they are canonical-equal. The canonical generic signature of both is obtained
by replacing generic parameters with their canonical types:

<τ_0_0, τ_0_1

where τ_0_0: Sequence, τ_0_1: Sequence,

τ_0_0.[Sequence]Element == τ_0_1.[Sequence]Element>

Reduced signatures? There is no notion of a “reduced generic signature” the way we
have reduced types. The generic requirements in a generic signature are always written
in a minimal, reduced form (Section 11.3); the only variation allowed is type sugar.

Empty generic signature If a nominal type declaration is not a generic context (that is,
neither it nor any parent context has any generic parameters), then its generic signature
will have no generic parameters or generic requirements. This is called the empty generic
signature. Lacking any generic parameters, the empty generic signature more generally
has no type parameters, either. The valid interface types of the empty generic signature
are the fully concrete types, that is, types that do not contain any type parameters.

6.1. Requirement Signatures

The generic signature of a protocol P always has a single generic parameter Self together
with a single conformance requirement Self: P:

<Self where Self: P>

The structure “inside” the Self type is described by the requirement signature of the
protocol. The requirement signature is constructed by collecting requirements from the
protocol’s inheritance clause, associated type inheritance clauses, and where clauses on
the protocol’s associated types and the protocol itself. Just like with generic signatures,
the requirements in a requirement signature are always converted into a minimal and
reduced form.

109

6. Generic Signatures

The -Xfrontend -debug-generic-signatures flag prints the requirement signature
of each protocol that is type checked. The written representation of a requirement
signature looks like a generic signature over the protocol’s single Self generic parameter.

For example, the requirement signature of the Sequence protocol is the following:

<Self where Self.Iterator: IteratorProtocol,

Self.Element == Self.Iterator.Element>

Requirement signatures also store a compact description of all protocol type aliases
defined within the protocol; these are used when resolving where clause requirements
involving subject types that name protocol type aliases. Protocol type aliases are not
shown by the -Xfrontend -debug-generic-signatures flag.

Conformance checking When checking a conformance to a protocol, the type checker
must ensure the concrete type satisfies all requirements in the requirement signature:

1. The concrete type must conform to any inherited protocols, which are encoded as
conformance requirements on the Self type.

2. The concrete type must be a class if the requirement signature imposes a superclass
or AnyObject requirement on Self.

3. Finally, the type witnesses must satisfy any requirements imposed on them by the
protocol.

All of the above are instances of the more general problem of checking whether concrete
types satisfy generic requirements (Section 10.2). The concrete type must also declare
a type witness for each of the protocol’s associated types (Section 8.3).

The conformance requirements of a protocol’s requirement signature are known as as-
sociated conformance requirements and each corresponding conformance is an associated
conformance (Section 8.5).

A mildly interesting observation The printed representation of a requirement signature
is almost never going to form a valid generic signature. The requirement signature of
Sequence as shown above does not state a conformance requirement Self: Sequence, so
it does not make sense to talk about requirements involving the Iterator and Element

member types of Self. This is certainly a valid requirement signature though, because
the Sequence protocol does not inherit from itself. If we try to build a generic signature
from a requirement signature by adding a conformance requirement to Self, then all
other requirements in the requirement signature will become redundant; they are, after
all, implied by the conformance of Self to the protocol.

110

6.1. Requirement Signatures

Listing 6.2.: Example showing non-obvious protocol inheritance relationship

1 protocol Base {

2 associatedtype Other: Base

3

4 typealias Salary = Int

5 }

6

7 protocol Good: Base {

8 typealias Income = Salary

9 }

10

11 // warning: protocol ‘Bad’ should be declared to refine ‘Base’ due to a

12 // same-type constraint on ‘Self’

13 protocol Bad {

14 associatedtype Tricky: Base where Tricky.Other == Self

15

16 typealias Income = Salary

17 // error: cannot find type ‘Salary’ in scope

18 }

Protocol inheritance clauses Recall from Section 5.4 that a constraint type written in
a protocol’s inheritance clause is equivalent to a where clause requirement with a subject
type of Self, just like a constraint type in a generic parameter’s inheritance clause is
equivalent to a where clause requirement with the generic parameter type as the subject
type. This correspondence comes with an important caveat, though.
Qualified name lookup into a protocol type must also look into inherited protocols

and the protocol’s superclass type, if there is one. However, name lookup can only look
directly at syntactic constructs, because in the compiler implementation, name lookup
is “downstream” of generics. Building a protocol’s requirement signature performs type
resolution, which queries name lookup; those name lookups cannot in turn depend on
the requirement signature having already been constructed.
For this reason, any where clause requirements which introduce protocol inheritance

relationships must be written with a subject type of exactly Self for qualified name
lookup to “understand” them. Protocol inheritance implied by some combination of
same-type requirements is not allowed. After a protocol’s requirement signature has been
built, conformance requirements on Self are compared against the protocol’s inheritance
clause; any unexpected conformance requirements are diagnosed with a warning.

Example 6.3. In Listing 6.2, the Self type of the Bad protocol is equivalent to the

111

6. Generic Signatures

type parameter Self.Tricky.Other via a same-type requirement.
The Tricky associated type conforms to Base, and the Other associated type of Base

also conforms to Base. For this reason, the Self type of Bad actually conforms to Base.
However, this inheritance relationship is invisible to name lookup, so resolution of the
underlying type of Income fails to find the declaration of Salary.
After building the protocol’s requirement signature, the type checker discovers the

unexpected conformance requirement on Self, but at this stage, it is too late to attempt
the failed name lookup again! For this reason, the compiler instead emits a warning
suggesting the user change the declaration of the protocol to protocol Bad: Base.

6.2. Type Parameter Order

The type parameters of a generic signature are linearly ordered with respect to each
other. Let’s begin by defining partial orders and linear orders, which are a special kind
of partial order.

Definition 6.1. A partial order over some set of objects S is a binary relation <
satisfying the following:

• For all a ∈ S, a ̸< a.

• For all a, b, c ∈ S, if a < b and b < c, then a < c.

Sometimes in the literature, partial orders use the symbol ≤ and require that a ≤ a for
all a ∈ S. This is equivalent to our definition, because you can define that a < b if and
only if a ≤ b and a ̸= b.

Definition 6.2. A linear order over some set S is a binary relation < that is a partial
order with the additional property that for all a, b ∈ S, exactly one of the following
holds:

• a < b.

• b < a.

• a = b.

Sometimes, a linear order is called a “total order.” Swift programmers will recognize
the Comparable protocol as abstracting over types that have an intrinsic linear order.

The linear order on type parameter plays an important role in the Swift ABI:

1. The calling convention of a generic function passes witness tables corresponding
to protocol conformance requirements. The conformance requirements are ordered
by comparing their subject type.

112

6.2. Type Parameter Order

2. Similarly, the in-memory layout of a witness table stores witness tables corre-
sponding to the protocol’s associated conformance requirements. The conformance
requirements are again ordered by comparing their subject type.

3. The mangled symbol names of generic functions encode their parameter and return
types. If those types contain type parameters, the type parameters are reduced.
The next section will give the definition of a reduced type parameter as the type
parameter that precedes all other type parameters in its equivalence class.

The intuition for this linear order is easiest if you think of a type parameter as a flat list
instead of the ordinary recursive representation—that is, a generic parameter followed
by zero or more associated type components, instead of recursively applied dependent
member types with a root generic parameter at the end. The first element of this list
is a generic parameter type, and subsequent elements are identifiers or associated type
declarations.

Definition 6.3. The length of a type parameter is the length of its flat list represen-
tation. The shortest possible type parameter is a generic parameter type, so the length
is always greater than or equal to one. The length can also be defined on the recursive
representation; a generic parameter type has length one, a dependent member type has
length one greater than the length of its base type.

First, we need a way to linearly order generic parameters and associated type dec-
larations. Then, we’ll define the linear order on type parameters using this flat list
representation.

Definition 6.4. The linear order on two generic parameters τ d i and τ D I compares
the depth, followed by the index:

• If d < D, then τ d i < τ D I.

• If d > D, then τ d i > τ D I.

• If d = D and i < I, then τ d i < τ D I.

• If d = D and i > I, then τ d i > τ D I.

• If d = D and i = I, then τ d i = τ D I.

The linear order on generic parameters can be more concisely stated as simply the
lexicographic order on (depth, index) pairs.

Definition 6.5. A root associated type is an associated type defined in a protocol such
that no inherited protocol has an associated type with the same name.

113

6. Generic Signatures

Example 6.4. In the following, Q.A is not a root associated type, because Q inherits P
and P also declares an associated type named A:

1 protocol P {

2 associatedtype A // root

3 }

4

5 protocol Q : P {

6 associatedtype A // not a root

7 associatedtype B // root

8 }

Definition 6.6. The linear order on protocols is a lexicographic order on fully-qualified
protocol names; that is, their module names are compared first, followed by the protocol
declaration name if both are defined in the same module.

Example 6.5. Say the Barn module defines a Horse protocol, and the Swift module
defines Collection. We have Barn.Horse < Swift.Collection, since Barn < Swift.
If the Barn module also defines a Saddle protocol, then Barn.Horse < Barn.Saddle;

both are from the same module, so we compare protocol names, Horse < Saddle.

Definition 6.7. The linear order on associated type declarations is a lexicographic order
on triples, composed from Definitions 6.5 and 6.6:

1. root associated types always precede non-root associated types.

2. two associated types with the same “root-ness” (meaning both are roots or both
are non-roots) but from different protocols are compared with the linear protocol
order.

3. two associated types with the same “root-ness” and same protocol are compared
by name.

If an erroneous protocol declares two associated types with the same name, the source
location or any other arbitrary tie breaker can also be used, since invalid code is never
ABI.

Finally, we can define the linear order on type parameters. In the literature, this is
known as a shortlex order.

Definition 6.8 (Linear order on type parameters). When two type parameters differ in
length, the one with shorter length precedes the other. For example, we have τ 2 0 <
τ 1 0.Element.
When two type parameters have the same length, elements are compared pairwise:

114

6.2. Type Parameter Order

Table 6.1.: Type parameters defined by the generic signature in Example 6.6.

Length 1

T

U

Length 2

T.[Sequence]Element

T.[Sequence]Iterator

T.Element

T.Iterator

U.[Sequence]Element

U.[Sequence]Iterator

U.Element

U.Iterator

Length 3

T.[Sequence]Iterator.[IteratorProtocol]Element

T.Iterator.Element

U.[Sequence]Iterator.[IteratorProtocol]Element

U.Iterator.Element

1. The first pair of elements are always generic parameter types, so they are compared
by Definition 6.4.

2. Subsequent pairs are identifiers or associated types. If one is an identifier and the
other is an associated type, the associated type declaration precedes the identifier;
that is, unbound type parameters “come after” bound type parameters. If both
elements are identifiers, they are compared with the lexicographic order on strings.
Associated types are compared by Definition 6.7.

Comparison stops at the first index where the two corresponding elements of each type
parameter are distinct. The outcome of the final comparison determines the relative
order of the two type parameters. If all elements are pairwise equal, the type parameters
have the same length and same elements, so must be canonical-equal.

Example 6.6. Table 6.1 shows all type parameters in the following generic signature,
written in type parameter order:

<T, U where T: Sequence, U: Sequence,

T.[Sequence]Element == U.[Sequence]Element>

A few unbound type parameters are also thrown in the mix to show how they are ordered
with respect to the bound type parameters. Notice how type parameters are ordered

115

6. Generic Signatures

Table 6.2.: Equivalence classes defined by the generic signature in Example 6.6

Reduced type parameter Representatives

T T

U U

T.[Sequence]Element T.[Sequence]Element

T.Element

U.[Sequence]Element

U.Element

T.[Sequence]Iterator.[IteratorProtocol]Element

T.Iterator.Element

U.[Sequence]Iterator.[IteratorProtocol]Element

U.Iterator.Element

T.[Sequence]Iterator T.[Sequence]Iterator

T.Iterator T.Iterator

U.[Sequence]Iterator U.[Sequence]Iterator

U.Iterator U.Iterator

by length first; all type parameters of length 1 precede those of length 2, which precede
those of length 3.

6.3. Reduced Types

Two type parameters are equivalent with respect to a generic signature if one can be
transformed into the other via a series of same-type requirements. The set of all type
parameters equivalent to a given type parameter is called its equivalence class. Every
type parameter is part of exactly one equivalence class, so the set of all type parameters
described by a generic signature can be partitioned into disjoint equivalence classes.

Definition 6.9. A type parameter is a reduced type parameter with respect to a generic
signature if it is not fixed to a concrete type, and precedes every other type parameter in
its own equivalence class. Type parameters fixed to concrete types are never considered
to be reduced.

Definition 6.10. An interface type is a reduced type with respect to a generic signature
if all type parameters appearing inside the interface type are reduced type parameters.
It follows that an interface type containing a type parameter that is fixed to a concrete
type is not a reduced type.

Example 6.7. Table 6.2 groups the type parameters from Example 6.6 into equivalence
classes. The type parameters in the first column are the reduced types of the type
parameters in the second column.

116

6.3. Reduced Types

The generic parameters T and U are in their own equivalence class. The equivalence
class of T.[Sequence]Element contains multiple type parameters, because of the same-
type requirement between the element types of T and U. Then there are two equivalence
classes for the iterator types, T.[Sequence]Iterator and U.[Sequence]Iterator.

The type parameters of an equivalence class are ordered; the first type parameter is
the reduced type parameter for all members of that equivalence class. The equivalence
classes themselves are also ordered, by comparing their reduced type parameters.

You can think of a same-type requirement as merging two equivalence classes together
into a larger equivalence class. The equivalence class T.[Sequence]Element was formed
by two same-type requirements:

1. Self.Element == Self.IteratorProtocol.Element, in the Sequence protocol.

2. T.Element == U.Element, in our generic signature.

If we omit the second requirement, T.[Sequence]Element and U.[Sequence]Element

would belong to two different equivalence classes. Each equivalence class would still
contain the element type of the corresponding iterator, because of the first same-type
requirement.

For a generic signature, we can can construct a directed graph called the equivalence
class graph. A directed graph is defined by a set of vertices, and a set of edges, which
are ordered pairs of vertices. The vertices here are reduced type parameters. There
is an edge from a type parameter T to a type parameter U if for some associated type
declaration A in a protocol P, T is conforms to P, and T.[P]A reduces to U. Edges are
labeled with their associated type declarations.

A type parameter can be thought of as a path through this directed graph, starting
from a generic parameter, then traversing successive edges for each associated type
declaration until reaching the type parameter’s equivalence class. Two reduced-equal
type parameters represent two different paths that end at the same equivalence class.

Example 6.8. Figure 6.1 shows the equivalence class graph for the generic signature of
Example 6.6:

• If you begin at the generic parameter T and follow the .Element edge, you end up
at the equivalence class whose reduced type is T.Element.

• Similarly, if you begin at the generic parameter U, then follow the .Iterator edge,
and finally follow the .Element edge, you also end up at the equivalence class with
the reduced type T.Element.

This shows that the type parameters T.Element and U.Iterator.Element belong to
the same equivalence class, with the reduced type of T.Element.

117

6. Generic Signatures

Figure 6.1.: The directed graph of equivalence classes from Example 9.1

T U

T.Element

T.Iterator U.Iterator

.Iterator .Iterator

.Element .Element

.Element .Element

The equivalence class graph is a useful intuition, but it does not yield a useful compu-
tational algorithm. The set of equivalence classes may be infinite, as you saw with the
SwiftUI View protocol shown in Section 5.4. It is also possible for a single equivalence
class to consist of an infinite set of type parameters. An example appears in the standard
library Collection protocol, which has a SubSequence associated type:

1 protocol Collection: Sequence {

2 ...

3 associatedtype SubSequence: Collection

4 where SubSequence == SubSequence.SubSequence

5 ...

6 }

In the generic signature <T where T: Collection>, all of the following type parameters
belong to the same equivalence class, via the same-type requirement:

T.SubSequence

T.SubSequence.SubSequence

T.SubSequence.SubSequence.SubSequence

...

Mathematical aside When we defined reduced type parameters, we assumed that each
equivalence class has a unique smallest type parameter. This might seem obvious, but

118

6.4. Generic Signature Queries

it is not always true for arbitrary infinite sets and linear orders. For example, the set
of negative integers is an infinite set that can be linearly ordered with the standard
“less-than” relation, but it does not have a minimum element, because we can exhibit
an infinite descending chain where each integer is smaller than the next:

· · · < −3 < −2 < −1

With the type parameter order, this cannot happen; it is a well-founded order. This
allows us to reduce the problem of finding the minimum element of an equivalence class
to the problem of finding the minimum element of a finite set of type parameters, as
follows:

1. The set of type parameters of any fixed length N is finite, because there are a finite
number of generic parameters and associated type declarations in a program, and
each type parameter is obtained by combining them in a finite number of possible
ways.

2. Therefore, the set of type parameters of length ≤ N is also finite.

3. This means that the set of type parameters that precede some type parameter T
of length N under our linear order is always finite, because it is a subset of the set
of type parameters of length ≤ N .

4. Now, we pick an arbitrary type parameter from our equivalence class, and find the
finite subset of type parameters that are smaller than or equal to our chosen type
parameter. A finite set always has a minimum element; this is the smallest type
parameter of our equivalence class.

There is an interesting corollary to the above argument: any infinite equivalence class
of type parameters must contain type parameters of arbitrary length.

6.4. Generic Signature Queries

A few times, we’ve mentioned “proving” properties that are implied by some combination
of generic requirements. A fundamental set of generic signature queries are used by the
rest of the compiler to reason about the type parameters of a generic signature. This
section just defines their behavior; a full accounting of how generic signature queries are
implemented will have to wait until Chapter 18.

The various kinds of queries are grouped into three categories, shown in Table 6.3.

Predicate queries The simplest of all queries are the binary predicates, which respond
with true or false.

119

6. Generic Signatures

Table 6.3.: Generic signature queries

Predicates isValidTypeParameter()

requiresProtocol()

requiresClass()

isConcreteType()

Properties getRequiredProtocols()

getSuperclassBound()

getConcreteType()

getLayoutConstraint()

Reduced types areReducedTypeParametersEqual()

isReducedType()

getReducedType()

isValidTypeParameter() answers if a type parameter is valid for this generic signature.

requiresProtocol() answers if a type parameter conforms to a protocol.

requiresClass() answers if a type parameter is subject to an AnyObject layout con-
straint, meaning it is represented at runtime as a single retainable pointer. This
can either be stated explicitly, or implied by a superclass requirement.

isConcreteType() answers if a type parameter is fixed to a concrete type.

Example 6.9. Consider this pair of generic signatures:

<E where E: Sequence>

<E, F where E: Sequence, E.[Sequence]Element: Sequence,

F == E.[Sequence]Element.[Sequence]Element>

• isValidTypeParameter(E) is true in both signatures.

• isValidTypeParameter(F) is only true in the second signature, because the first
signature only has one generic parameter.

• isValidTypeParameter(E.Element) is true in both signatures.

• isValidTypeParameter(E.Element.Element) is only true in the second signa-
ture, because E.Element does not conform to Sequence in the first signature.

Example 6.10. Consider this generic signature:

<T, U, V where T: Collection, T.[Sequence]Element == Array<U>,

U: Executor, V: NSObject>

120

6.4. Generic Signature Queries

The following queries all return true:

• requiresProtocol(T, Collection), because the requirement is directly stated.

• requiresProtocol(T, Sequence), because Collection inherits from Sequence.

• requiresProtocol(T.Iterator, IteratorProtocol), because the Iterator as-
sociated type of Sequence conforms to IteratorProtocol.

• requiresClass(U), because Executor is a class-constrained protocol.

• requiresClass(V), because NSObject is a class.

• isConcreteType(T.Element), because the requirement is directly stated.

• isConcreteType(T.Iterator.Element), implied by the same-type requirement
in the requirement signature of Sequence.

Property queries The next set of queries derive more complex properties that are not
just true/false predicates.

getRequiredProtocols() returns the list of all protocols that a type parameter must
conform to. The list is minimal in the sense that no protocol inherits from any
other protocol in the list, and sorted in canonical protocol order (Definition 6.6).

getSuperclassBound() returns the superclass bound of a type parameter if there is
one.

getConcreteType() returns the concrete type to which a type parameter is fixed if
there is one.

getLayoutConstraint() returns the layout constraint describing a type parameter’s
runtime representation if there is one.

The AnyObject layout constraint is the only one that can be explicitly written
in source. A second kind of layout constraint, NativeClass, is implied by a
superclass requirement whose superclass is a native Swift class, meaning a class
not inheriting from NSObject. The NativeClass layout constraint implies the
AnyObject layout constraint.

The two differ in how reference counting operations on their instances are lowered
in code generation; arbitrary class instances use the Objective-C runtime entry
points for retain and release operations, whereas native class instances use a more
efficient calling convention.

Example 6.11. In the following generic signature, getSuperclassBound(T) is G<U>:

121

6. Generic Signatures

1 <T, U where T: G<U>>

2

3 class G<A> {}

Example 6.12. In the following generic signature, getConcreteType(T.Index) is Int:

<T where T: Collection, T.[Collection]Indices == Range<Int>>

This is a non-trivial consequence of several requirements:

• The type parameter T.[Collection]Index is in the equivalence class of the type
parameter T.[Collection]Indices.[Sequence]Element, via the same-type re-
quirement in the Collection protocol.

• The base type of this type parameter is T.[Collection]Indices, which is fixed
to the concrete type Range<Int> in our generic signature.

• Therefore, any member types of this type parameter are fixed to the corresponding
type witnesses in the concrete type’s conformance.

• The standard library defines a conditional conformance of Range to Collection

when the Element generic parameter of Range conforms to the Strideable pro-
tocol:

1 extension Range: Collection where Element: Strideable {...}

Since Int conforms to Strideable, the type Range<Int> satisfies the conditional
requirements of this conditional conformance.

The Element associated type is witnessed by the Element generic parameter in
the conformance of Range<Element> to Sequence.

• The type parameter T.[Collection]Indices.[Sequence]Element is therefore
fixed to the concrete type Int, which gives us the final result.

Reduced type queries The final three generic signature queries concern reduced types:

areReducedTypeParametersEqual() answers if two type parameters have the reduced
type. Does not produce a useful result if one or the other is concrete.

isReducedType() answers if an arbitrary type is already reduced.

getReducedType() computes the reduced type of an arbitrary type.

Example 6.13. In the generic signature <T where T: Sequence>, the reduced type of
Array<T.Iterator.Element> is Array<T.Element>.

122

6.5. Source Code Reference

6.5. Source Code Reference

Key source files:

• include/swift/AST/GenericSignature.h

• include/swift/AST/Requirement.h

• include/swift/AST/RequirementSignature.h

• lib/AST/GenericSignature.cpp

Other source files:

• include/swift/AST/Decl.h

• include/swift/AST/DeclContext.h

• lib/AST/Decl.cpp

• lib/AST/DeclContext.cpp

DeclContext class

See also Section 4.4 and Section 5.5.

• getGenericSignatureOfContext() returns the generic signature of the innermost
generic context, or the empty generic signature if there isn’t one.

GenericContext class

See also Section 5.5.

• getGenericSignature() returns the declaration’s generic signature, computing
it first if necessary. If the declaration does not have a generic parameter list or
trailing where clause, returns the generic signature of the parent context.

GenericSignature class

Represents an immutable, uniqued generic signature. Meant to be passed as a value, it
stores a single instance variable, a GenericSignatureImpl * pointer.

The getPointer() method returns this pointer. The pointer is not const, however
GenericSignatureImpl does not define any mutating methods.
The pointer may be nullptr, representing an empty generic signature; the default

constructor GenericSignature() constructs this value. There is an implicit bool con-
version which tests for the empty generic signature.

123

https://github.com/apple/swift/tree/main/include/swift/AST/GenericSignature.h
https://github.com/apple/swift/tree/main/include/swift/AST/Requirement.h
https://github.com/apple/swift/tree/main/include/swift/AST/RequirementSignature.h
https://github.com/apple/swift/tree/main/lib/AST/GenericSignature.cpp
https://github.com/apple/swift/tree/main/include/swift/AST/Decl.h
https://github.com/apple/swift/tree/main/include/swift/AST/DeclContext.h
https://github.com/apple/swift/tree/main/lib/AST/Decl.cpp
https://github.com/apple/swift/tree/main/lib/AST/DeclContext.cpp

6. Generic Signatures

The getPointer() method is only used occasionally, because the GenericSignature
class overloads operator-> to forward method calls to the GenericSignatureImpl *

pointer. Some operations on generic signatures are methods on GenericSignature

(called with “.”) and some on GenericSignatureImpl (called with “->”).
Methods of GenericSignature are safe to call with an empty generic signature, which

is presented as having no generic parameters or requirements. Methods forwarded to
GenericSignatureImpl can only be invoked if the signature is non-empty.
The GenericSignature class explicitly deletes operator== and operator!= to make

the choice between pointer and canonical equality explicit. To check pointer equality of
generic signatures, first unwrap both sides with a getPointer() call:

1 if (lhsSig.getPointer() == rhsSig.getPointer())

2 ...;

The more common canonical signature equality check is implemented by the isEqual()
method on GenericSignatureImpl:

1 if (lhsSig->isEqual(rhsSig))

2 ...;

Various accessor methods:

• getGenericParams() returns an array of GenericTypeParamType. If the generic
signature is empty, this is the empty array, otherwise it contains at least one generic
parameter.

• getInnermostGenericParams() returns an array of GenericTypeParamType with
the innermost generic parameters only, that is, those with the highest depth. If
the generic signature is empty, this is the empty array, otherwise it contains at
least one generic parameter.

• getRequirements() returns an array of Requirement. If the generic signature is
empty, this is the empty array.

• getCanonicalSignature() returns the canonical signature. If the generic signa-
ture is empty, returns the canonical empty generic signature.

• getPointer() returns the underlying GenericSignatureImpl *.

Computing reduced types:

• getReducedType() returns the reduced type of an interface type for this generic
signature. If the generic signature is empty, the type must be fully concrete, and
is returned unchanged.

124

6.5. Source Code Reference

Other:

• print() prints the generic signature, with various options to control the output.

• dump() prints the generic signature, meant for use from the debugger or ad-hoc
print debug statements.

GenericSignatureImpl class

The backing storage of a generic signature. Instances of this class are allocated in the
AST context, and are always passed by pointer.

• isEqual() checks if two generic signatures are canonically equal.

• getSugaredType() given a type containing canonical type parameters that is un-
derstood to be written with respect to this generic signature, replaces the generic
parameter types with their “sugared” forms, so that the name is preserved when
the type is printed out to a string.

• forEachParam() invokes a callback on each generic parameter of the signature; the
callback also receives a boolean indicating if the generic parameter type is reduced
or not—a generic parameter on the left hand side of a same-type requirement is
not reduced.

• areAllParamsConcrete() answers if all generic parameters are fixed to concrete
types via same-type requirements, which makes the generic signature somewhat
like an empty generic signature. Fully-concrete generic signatures are lowered away
at the SIL level.

The generic signature queries from Section 6.4 are methods on GenericSignatureImpl:

• Predicate queries:

– isValidTypeParameter()

– requiresProtocol()

– requiresClass()

– isConcreteType()

• Property queries:

– getRequiredProtocols()

– getSuperclassBound()

– getConcreteType()

125

6. Generic Signatures

– getLayoutConstraint()

• Reduced type queries:

– areReducedTypeParametersEqual()

– isReducedType()

– getReducedType()

CanGenericSignature class

The CanGenericSignature class wraps a GenericSignatureImpl * pointer which is
known to be canonical. The pointer can be recovered with the getPointer() method.
There is an implicit conversion from CanGenenericSiganture to GenericSignature.
The operator-> forwards method calls to the underlying GenericSignatureImpl.

The operator== and operator!= operators are used to test CanGenericSignature
for pointer equality. The isEqual() method of GenericSignatureImpl implements
canonical equality on arbitrary generic signatures by first canonicalizing both sides, then
checking the resulting canonical signatures for pointer equality. Therefore, the following
are equivalent:

1 if (lhsSig->isEqual(rhsSig))

2 ...;

3

4 if (lhsSig.getCanonicalSignature() == rhsSig.getCanonicalSignature())

5 ...;

The CanGenericSignature class inherits from GenericSignature, and so inherits all of
the same methods. Additionally, it overrides getGenericParams() to return an array
of CanGenericTypeParamType.

Requirement class

A generic requirement.

• getKind() returns the RequirementKind.

• getSubjectType() returns the subject type.

• getConstraintType() returns the constraint type if the requirement kind is not
RequirementKind::Layout, otherwise asserts.

• getProtocolDecl() returns the protocol declaration of the constraint type if this
is a conformance requirement with a protocol type as the constraint type.

126

6.5. Source Code Reference

• getLayoutConstraint() returns the layout constraint if the requirement kind is
RequirementKind::Layout, otherwise asserts.

RequirementKind enum class

An enum encoding the four kinds of requirements.

• RequirementKind::Conformance

• RequirementKind::Superclass

• RequirementKind::Layout

• RequirementKind::SameType

ProtocolDecl class

See also Section 5.5.

• getRequirementSignature() returns the protocol’s requirement signature, first
computing it, if necessary.

RequirementSignature class

A protocol requirement signature.

• getRequirements() returns an array of Requirement.

• getTypeAliases() returns an array of ProtocolTypeAlias.

ProtocolTypeAlias class

A protocol type alias descriptor.

• getName() returns the name of the alias.

• getUnderlyingType() returns the underlying type of the type alias. This is a
type written in terms of the type parameters of the requirement signature.

TypeBase class

See also Section 3.6.

• isTypeParameter() answers if this type is a type parameter; that is, a generic
parameter type, or a DependentMemberType whose base is another type parameter.

127

6. Generic Signatures

• hasTypeParameter() answers if this type is itself a type parameter, or if it contains
a type parameter in structural position. For example, Array<τ 0 0> will answer
false to isTypeParameter(), but true to hasTypeParameter().

DependentMemberType class

A type representing a reference to an associated type.

• getBase() returns the base type; for example, given τ 0 0.Foo.Bar, will answer
τ 0 0.Foo.

• getName() returns the identifier naming the associated type.

• getAssocType() if this is a resolved DependentMemberType, returns the associated
type declaration, otherwise if it is unresolved, returns nullptr.

TypeDecl class

See also Section 4.4.

• compare() compares two protocols by the protocol order (Definition 6.6), returning
one of the following:

– −1 if this protocol precedes the given protocol,

– 0 if both protocol declarations are equal,

– 1 if this protocol follows the given protocol.

swift::compareDependentTypes() function

Implements the type parameter order (Definition 6.8), returning one of the following:

• −1 if the left hand side precedes the right hand side,

• 0 if the two type parameters are equal as canonical types,

• 1 if the left hand side follows the right hand side.

128

7. Substitution Maps

A substitution map describes a mapping from type parameters of a generic signature to
replacement types which satisfy the requirements of this generic signature. Substitution
maps arise when a reference to a generic declaration is specialized by applying generic
arguments.
The generic signature of a substitution map is called the input generic signature. A

substitution map stores a reference to its input generic signature, and the list of generic
parameters and conformance requirements in this signature determine the substitution
map’s shape:

< A , B where B: Sequence , B.[Sequence]Element == Int>

A substitution map consists of a replacement type for each generic parameter, and a
conformance for each conformance requirement:

A B B: Sequence

⇓ ⇓ ⇓
String Array<Int> Array<Int>: Sequence

We can collect all of the above information in a table:

Generic parameters Types

A ⇒ String

B ⇒ Array<Int>

Requirements Conformances

B: Sequence ⇒ Array<Int>: Sequence

Or more concisely,

Types

A := String

B := Array<Int>

Conformances

Array<Int>: Sequence

129

7. Substitution Maps

Listing 7.1.: Substitution maps in type checking

1 func genericFunction<A, B: Sequence>(_: A, _: B)

2 where B.Element == Int {}

3

4 struct GenericType<A, B: Sequence> where B.Element == Int {

5 func nonGenericMethod() {}

6 }

7

8 // substitution map for the call is {A := String, B := Array<Int>}.

9 genericFunction("hello", [1, 2, 3])

10

11 // the type of ‘value’ is GenericType<String, Array<Int>>.

12 let value = GenericType<String, Array<Int>>()

13

14 // the context substitution map for the type of ‘value’ is

15 // {A := String, B := Array<Int>}.

16 value.nonGenericMethod()

Example 7.1. Listing 7.1 shows how our substitution map arises when type checking
some code:

Types

A := String

B := Array<Int>

Conformances

Array<Int>: Sequence

Here, all three of genericFunction(), GenericType and nonGenericMethod() have the
same generic signature, <A, B where B: Sequence, B.Element == Int>. When type
checking a generic function call, the expression type checker infers the generic arguments
from the types of the argument expressions. When referencing a generic type, the generic
arguments can be written explicitly.
All three generic declarations are referenced with the same substitution map in this

example. (When referencing a generic type declaration, this substitution map is called
the context substitution map of the specialized type, which is GenericType<String,

Array<Int>> here. Context substitution maps are coming right up in Section 7.1.)

Type substitution Applying a substitution map to a generic parameter projects the
corresponding replacement type from the substitution map.

130

A type parameter is not necessarily a generic parameter type; it might be a dependent
member type as well. Applying a substitution map to a dependent member type derives
the replacement type from one of the substitution map’s conformances.
Now, we haven’t talked about conformances yet. There is an inherent circularity

between substitution maps and conformances—substitution maps store conformances,
and conformances can store substitution maps, which means that whichever one you
choose to explain first, you necessarily have to hand-wave the existence of the other. We
will look at conformances in great detail in Chapter 8. The derivation of replacement
types for dependent member types is discussed in Section 8.4.
Recall that an interface type is a type containing type parameters valid for some

generic signature. A substitution map can be more generally applied to an interface
type, not just a type parameter. Called type substitution, this operation recursively
transforms any type parameters appearing in the interface type with their replacement
types, preserving the “concrete structure” of the interface type.
The interface type here is called the original type, and the result type the substituted

type. It can be helpful to think of applying a substitution map to an interface type as a
right action:

original type × substitution map = substituted type

Type substitution does not care about generic parameter sugar in the original type;
replacement types for generic parameters are always looked up by depth and index in
the substitution map.

Example 7.2. Applying the substitution map from our running example to sugared
and canonical generic parameter types produces the same results:

A

τ 0 0

B

τ 0 1


×

Types

A := String

B := Array<Int>

Conformances

Array<Int>: Sequence

=



String

String

Array<Int>

Array<Int>


Example 7.3. Listing 7.2 shows a generic type with four member type alias declara-
tions. There are four global variables, and the type of each global variable is written
as a member type alias reference with the same type base type, GenericType<String,
Array<Int>>.
Type resolution resolves a member type alias reference by applying a substitution map

to the underlying type of the type alias declaration. Here, the underlying type of each
type alias declaration is an interface type for the generic signature of GenericType, and
the substitution map is the same substitution map as Example 7.1.

131

7. Substitution Maps

Listing 7.2.: Applying a substitution map to four interface types

1 struct GenericType<A, B: Sequence> where B.Element == Int {

2 typealias T1 = A

3 typealias T2 = B

4 typealias T3 = (A.Type, Float)

5 typealias T4 = (Optional<A>) -> B

6 }

7

8 let t1: GenericType<String, Array<Int>>.T1 = ...

9 let t2: GenericType<String, Array<Int>>.T2 = ...

10 let t3: GenericType<String, Array<Int>>.T3 = ...

11 let t4: GenericType<String, Array<Int>>.T4 = ...

Applying the substitution map to the underlying type of each type alias declaration
yields the type of each global variable:

Original type Substituted type

T1 A String

T2 B Array<Int>

T3 (A.Type, Float) (String.Type, Float)

T4 (Optional<A>) -> B (Optional<String>) -> Array<Int>

The first two original types are generic parameters, and substitution directly projects
the corresponding replacement type from the substitution map; the second two original
types are substituted by recursively replacing generic parameters they contain.

References to generic type alias declarations are more complex because in addition
to the generic parameters of the base type, the generic type alias will have generic
parameters of its own. Section 10.1 describes how the substitution map is computed in
this case.

Substitution can fail if the interface type contains member types and some of the
conformances in the substitution map are invalid. In this case, an error type is returned
instead of signaling an assertion. Invalid conformances can appear in substitution maps
when the user’s own code is invalid; it is not an invariant violation as long as other errors
are diagnosed elsewhere and the compiler does not proceed to SILGen with error types
in the abstract syntax tree.

Output generic signature If the replacement types in the substitution map are fully
concrete—that is, they do not contain type parameters—then all possible substituted

132

7.1. Context Substitution Maps

types produced by this substitution map will always be fully concrete. If the replace-
ment types are interface types for some output generic signature, the substitution map’s
substituted types will be written in terms of the type parameters of the output generic
signature. The output generic signature might be a different generic signature than the
input generic signature of the substitution map. This leads naturally to the concept of
substitution map composition, described in Section 7.2.
The output generic signature is not stored in the substitution map; it is implicit from

context. Also, fully concrete types can be seen as valid interface types for any generic
signature, because they do not contain type parameters at all. Keeping that in mind,
we have this rule:

Substitution maps transform the interface types of an input generic
signature into the interface types of an output generic signature.

We haven’t introduced archetypes yet, but substitution maps whose replacement types
are archetypes will be discussed in Section 9.1.

Canonical substitution maps Substitution maps are immutable and uniqued, just like
types and generic signatures. A substitution map is canonical if all replacement types are
canonical types and all conformances are canonical conformances. A substitution map
is canonicalized by constructing a new substitution map from the original substitution
map’s canonicalized replacement types and conformances.
As with types, canonicalization gives substitution maps two levels of equality; two

substitution maps are pointer-equal if their replacement types and conformances are
pointer-equal. Two substitution maps are canonical-equal if their canonical substitution
maps are pointer-equal; or equivalently, if their replacement types and conformances are
canonical-equal.
Applying a canonical substitution map to a canonical original type is not guaranteed

to produce a canonical substituted type. However, there are two important invariants
that do hold:

1. Given two canonical-equal original types, applying the same substitution map to
both will produce two canonical-equal substituted types.

2. Given an original type and two canonical-equal substitution maps, applying the two
substitution maps to this type will also produce two canonical-equal substituted
types.

7.1. Context Substitution Maps

A nominal type is specialized if the type itself or one of its parent types is a generic
nominal type. That is, Array<Int> and Array<Int>.Iterator are both specialized

133

7. Substitution Maps

types, but Int and String.UTF8View are not. Equivalently, a nominal type is specialized
if the nominal type declaration is a generic context—that is, the type declaration itself
has a generic parameter list, or an outer declaration context has one.
Every specialized type determines a unique substitution map for the generic signature

of its declaration, called the context substitution map. The context substitution map
replaces the generic parameters of the type declaration with the corresponding generic
arguments of the specialized type.
The defining property is that applying a specialized type’s context substitution map

to the declared interface type of the type declaration gives us back the specialized type:

declared interface type × context substitution map = specialized type

To demonstrate the above identity, consider the generic signature of the Dictionary

type declaration in the standard library:

<Key, Value where Key: Hashable>

One possible specialized type for Dictionary is the type Dictionary<Int, String>;
this type, its context substitution map and the declared interface type of Dictionary
are related as follows:

Dictionary<τ 0 0, τ 0 1> ×

Types

τ 0 0 := Int

τ 0 1 := String

Conformances

Int: Hashable

= Dictionary<Int, String>

The identity substitution map What about the context substitution map of a type
declaration’s declared interface type? By definition, this substitution map must leave
the declared interface type unchanged. That is, it maps every generic parameter of the
type declaration’s generic signature to itself. If we look at the Dictionary type again,
we get

Dictionary<τ 0 0, τ 0 1> ×

Types

τ 0 0 := τ 0 0

τ 0 1 := τ 0 1

Conformances

τ 0 0: Hashable

= Dictionary<τ 0 0, τ 0 1>

Every generic signature has such a substitution map, called the identity substitution
map.

interface type × identity substitution map = interface type

134

7.1. Context Substitution Maps

Applying the identity substitution map to any interface type leaves it unchanged, with
three caveats:

1. The interface type must only contain type parameters which are valid in the input
generic signature of this identity substitution map.

2. Substitution might change type sugar, because generic parameters appearing in
the original interface type might be sugared differently than the input generic
signature of this identity substitution map. Therefore, canonical equality of types
is preserved, not necessarily pointer equality.

3. We won’t talk about archetypes until Chapter 9, but you may have met them
already. Applying the identity substitution map to a contextual type containing
archetypes replaces the archetypes with equivalent type parameters. There is a
corresponding forwarding substitution map which maps all generic parameters to
archetypes; the forwarding substitution map acts as the identity in the world of
contextual types.

The empty substitution map The empty generic signature only has a single unique
substitution map, the empty substitution map, so the context substitution map of a
non-specialized nominal type is the empty substitution map.
Recall that the only valid interface types of the empty generic signature are the fully

concrete types. The action of the empty substitution map leaves fully concrete types
unchanged.

fully-concrete type × empty substitution map = fully-concrete type

Int × empty substitution map = Int

In general, the empty substitution map is not the same as the identity substitution
map. The empty substitution map is the identity substitution map of the empty generic
signature only. Applying the empty substitution map to an interface type containing
type parameters is a substitution failure and returns an error type.

τ 0 0.[Sequence]Element × empty substitution map = <<error type>>

Other declaration contexts A more general notion is the context substitution map of
a type with respect to a declaration context. This is where the “context” comes from in
“context substitution map.” Recall that a qualified name lookup foo.bar looks for a
member named foo on some base type, here the type of foo. The context substitution
map for the member’s declaration context describes the substitutions for computing the
type of the member reference expression.

135

7. Substitution Maps

When the declaration context is the type declaration itself, “context substitution map
with respect to its own declaration context” coincides with the earlier notion of “the”
context substitution map of a base type.
Recall from Section 2.1 that qualified name lookup performs a series of direct lookups,

first into the type declaration itself, then its superclass if any, and finally any protocols
it conforms to. A direct lookup in turn searches the immediate members of the type
declaration and any of its extensions. Thus we can talk about the set of declaration
contexts reachable from a qualified name lookup on a base type:

1. The type declaration itself and its extensions.

2. The superclass declaration and its extensions, and everything reachable recursively
via the superclass declaration.

3. All protocol conformances of the type declaration, and their protocol extensions.

The declaration context for computing a context substitution map must be reachable
via qualified name lookup from the base type.

Definition 7.1. The context substitution map with respect to a declaration context is
defined as follows for the three kinds of reachable declaration contexts:

1. When the declaration context is the generic type or an extension, the replacement
types of the substitution map are the corresponding generic arguments of the base
type. If the context is a constrained extension, the substitution map will store
additional conformances for the conformance requirements of the extension.

2. When the declaration context is a protocol or a protocol extension, the generic
signature is the protocol generic signature, possibly with additional requirements
if the context is a constrained protocol extension. The substitution map’s single
replacement type is the entire base type.

3. When the declaration context is a superclass of the generic type (which must be a
class type or an archetype with a superclass requirement), the context substitution
map is constructed recursively from the type declaration’s superclass type. This
case will be described in Chapter 16.

The context substitution map’s input generic signature is the generic signature of the
declaration context; thus it can be applied to the interface type of a member of this
context.

Example 7.4. Case 1 determines the type of x in Listing 7.3. The base type is the
generic nominal type Outer<Int>.Inner<String> and the type alias A is a member of
the constrained extension of Outer.Inner.

136

7.1. Context Substitution Maps

Listing 7.3.: Context substitution map with respect to an extension context

1 struct Outer<T> {

2 struct Inner<U> {}

3 }

4

5 extension Outer.Inner where U: Sequence {

6 typealias A = (U.Element) -> ()

7 }

8

9 // What is the type of ‘x’?

10 let x: Outer<Int>.Inner<String>.A = ...

The generic nominal type Outer<Int>.Inner<String> sets T to Int and U to String.
The extension defines the additional conformance requirement U: Sequence. Therefore,
the context substitution map with respect to the extension’s declaration context is:

Types

T := Int

U := String

Conformances

String: Sequence

Applying the above substitution map to the declared interface type of the type alias A
gives us the final result:

(U.[Sequence]Element) -> () ×

Types

T := Int

U := String

Conformances

String: Sequence

= (Character) -> ()

Example 7.5. In the previous example, we could instead compute the context substi-
tution map for the type declaration context itself. We get almost the same substitution
map, except without the conformance requirement:

Types

T := Int

U := String

Applying this substitution map to the declared interface type of the type alias A will
produce an error type, because the dependent member type U.[Sequence]Element is

137

7. Substitution Maps

not a valid type parameter for this substitution map’s input generic signature:

(U.[Sequence]Element) -> () ×
Types

T := Int

U := String

= <<error type>>

Example 7.6. What if we use the correct declaration context, but the base type does
not satisfy the requirements of the constrained extension? For example, consider the
type Outer<Int>.Inner<Int>. Computing the context substitution map of our base
type for the constrained extension’s declaration context will output a substitution map
containing an invalid conformance, because Int does not conform to Sequence:

Types

T := Int

U := Int

Conformances

invalid conformance

In fact, the type alias A cannot be referenced as a member of this base type at all,
because name lookup checks whether the generic requirements of a type declaration are
satisfied. Checking generic requirements will be first introduced as part of type resolution
(Section 10.1), and will come up elsewhere as well.

Protocol substitution map The context substitution map of a type with respect to
a protocol declaration context is called the protocol substitution map. Every protocol’s
generic signature has a single generic parameter with a single conformance requirement,
so a substitution map for this generic signature consists of a conformance together with
its conforming type. In this manner, there is a one-to-one correspondence between
conformances to a specific protocol and the substitution maps of the protocol’s generic
signature; this mapping is defined by the protocol substitution map construction.

Types

Self := T

Conformances

T: P

Example 7.7. The type of x in Listing 7.4 is determined by the context substitution
map of S for the protocol declaration context P, which is the protocol substitution map
for the conformance S: P:

Types

Self := S

Conformances

S: P

138

7.2. Composing Substitution Maps

Listing 7.4.: The context substitution map with respect to a protocol context

1 struct S: P {

2 typealias Element = Int

3 }

4

5 protocol P {

6 associatedtype Element

7 typealias B = Array<Self.Element>

8 }

9

10 // What is the type of ‘x’?

11 let x: S.B = ...

The declared interface type of B is Array<Self.Element>. Applying our substitution
map replaces the dependent member type Self.Element with the type witness Int from
the conformance, giving us the final substituted type Array<Int>.

7.2. Composing Substitution Maps

Just as a substitution map can be applied to an original type to produce a substituted
type, a substitution map can also be applied to another substitution map to produce a
new substitution map. The substitution maps are assumed to be compatible, meaning
the output generic signature of the first must equal the input generic signature of the
second. This is called the composition of two substitution maps:

substitution map 1 × substitution map 2 = substitution map 3

The action of the composed substitution map is equal to first applying the left hand side
substitution map, followed by the right hand side:1

type ×
(

substitution map 1 × substitution map 2
)

=
(

type × substitution map 1
)
× substitution map 2

Therefore, the input generic signature of a composed substitution map is the input
generic signature of the left hand side; its output generic signature is the output generic

1This is why substitution maps act on the right and not the left; it makes our equations more natural.

139

7. Substitution Maps

Listing 7.5.: Motivating substitution map composition

1 struct Outer<A> {

2 var inner: Inner<Array<A>, A>

3 }

4

5 struct Inner<T, U> {

6 var value: (T) -> U

7 }

8

9 let outer: Outer<Int> = ...

10 let x = outer.inner.value

signature of the right hand side.

signature 1 to signature 2︷ ︸︸ ︷
substitution map 1 ×

signature 2 to signature 3︷ ︸︸ ︷
substitution map 2︸ ︷︷ ︸

signature 1 to signature 3

Composition is defined by applying the second substitution map to each replacement
type and conformance of the first substitution map, and collecting the results in a new
substitution map. We haven’t explained what it means to apply a substitution map to
a conformance yet; this will be revisited in Section 8.2.

Example 7.8. Listing 7.5 shows an example where substitution map composition can
help reason about the types of chained member reference expressions.
The inner stored property of Outer has type Inner<Array<A>, A>. Here is the

context substitution map of this type:

Types

T := Array<A>

U := A

The substitution map’s input generic signature is the generic signature of the type dec-
laration Inner, which is <T, U>.

This type is an interface type for the generic signature of Outer, so the output generic
signature of the above substitution map is the generic signature of Outer, which is <A>.
Now, let’s look at the outer global variable. It has the type Outer<Int>, with the

following context substitution map:

Types

A := Int

140

7.2. Composing Substitution Maps

The input generic signature of the context substitution map is the generic signature
of Outer. The output generic signature is the empty generic signature, because the
replacement type is fully concrete.
We can compose these two substitution maps, because the first substitution map’s

output generic signature is the same as the second substitution map’s input generic
signature. The composition is defined as applying the second substitution map to each
replacement type of the first:

Types

T := Array<A>

U := A

× Types

A := Int
=

Types

T := Array<Int>

U := Int

Now, the substituted type of outer.inner.value is derived from the interface type
of value, which is the function type (T) -> U. Substitution map composition gives us
two equivalent ways to compute the substituted type:

1. By applying the first substitution map to the original type (T) -> U to get an
intermediate substituted type, and then applying the second substitution map to
the intermediate substituted type to produce the final substituted type: (T) -> U ×

Types

T := Array<A>

U := A

× Types

A := Int

= Array<A> -> A × Types

A := Int

= Array<Int> -> Int

2. By composing the two substitution maps to get a third substitution map, and then
applying the third substitution map to the original type (T) -> U:

(T) -> U ×

 Types

T := Array<A>

U := A

× Types

A := Int



= (T) -> U ×
Types

T := Array<Int>

U := Int

= Array<Int> -> Int

The final substituted type, Array<Int> -> Int, is the same in both cases.

141

7. Substitution Maps

Composing a generic signature’s identity substitution map with another substitution
map for the same input generic signature leaves the substitution map unchanged:

identity substitution map × original substitution map = original substitution map

The identity substitution map is also an identity for composition on the right, with the
same caveat as for types; it is only true if the other substitution map’s replacement types
are interface types. If they are contextual types, the archetypes will be replaced with
equivalent type parameters.

original substitution map × identity substitution map = original substitution map

Example 7.9. The above identities hold for the first substitution map from Example 7.8:

Types

T := T

Conformances

T: Sequence︸ ︷︷ ︸
left identity

×
Types

T := Array<A>

U := A︸ ︷︷ ︸
original substitution map

=

Types

T := Array<A>

U := A︸ ︷︷ ︸
original substitution map

Types

T := Array<A>

U := A︸ ︷︷ ︸
original substitution map

× Types

A := A︸ ︷︷ ︸
right identity

=

Types

T := Array<A>

U := A︸ ︷︷ ︸
original substitution map

Note that the left and right identity substitution maps are different in this case, because
our substitution map has different input and output generic signatures.

Substitution map composition is associative. This means that both possible ways of
composing three substitution maps will output the same result:(

substitution map 1 × substitution map 2
)
× substitution map 3

= substitution map 1 ×
(

substitution map 2 × substitution map 3
)

Mathematical aside These sorts of rules are occasionally useful when writing code
in the compiler, but understanding them helps learn to think about substitution maps
even more. If you have a background in higher math, you will be familiar with the idea
of equational reasoning ; describing a set of objects by writing down the fundamental
equations they satisfy.
Linear algebra is the study of vector spaces and linear transformations. A linear

transformation is a function from one vector space into another which preserves vector

142

7.3. Building Substitution Maps

addition and scalar multiplication. While a vector space over a non-finite field is an
infinite set, a linear transformation from a finite-dimensional vector space is completely
determined by its values on a finite set of basis vectors.
This is similar in a sense to substitution maps. While the input generic signature of a

substitution map might have an infinite set of unique type parameters, the substitution
map is not an arbitrary transformation of types; it preserves the “concrete shape” of the
original type and transforms dependent member types in a certain way. From this, it
follows that the structure of a substitution map is entirely determined by its behavior
on a finite set of replacement types and conformances.

An even more mathematical aside In abstract algebra, a category is a collection of
objects and morphisms with certain properties. Each morphism is associated with a pair
of objects, the source and target. The set of morphisms with source A and target B is
denoted Hom(A, B). The morphisms of a category must obey certain properties:

1. For every object A, there is an identity morphism 1A ∈ Hom(A,A).

2. If f ∈ Hom(A,B) and g ∈ Hom(B,C) are a pair of morphisms, there is a third
morphism g ◦ f ∈ Hom(A,C), called the composition of f and g.

3. Composition respects the identity: if f ∈ Hom(A,B), then f ◦ 1A = 1B ◦ f = f .

4. Composition is associative: if f ∈ Hom(A,B), g ∈ Hom(B,C) and h ∈ Hom(C,D),
then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

We can define the category of vector spaces by taking the objects to be vector spaces
and the morphisms to be linear transformations.
We also can define the category of generic signatures where the objects are generic

signatures and morphisms are substitution maps, with two caveats. First, the morphism
composition notation (g◦f) is the opposite of our notation for substitution maps (f×g).
Second, in order for the identity substitution map to act as an identity morphism, we
need to restrict our category to those substitution maps where the replacement types
are interface types only.
We can similarly define a category where the objects are generic signatures and the

morphisms are substitution maps containing contextual types only, if we take the identity
morphism to be the forwarding substitution map instead of the identity substitution map.

7.3. Building Substitution Maps

Now that you’ve seen how to get substitution maps from types, and how to compose
existing substitution maps, it’s time to talk about building substitution maps from
scratch using the two variants of the get substitution map operation.

143

7. Substitution Maps

The first variant constructs a substitution map directly from its three constituent
parts: a generic signature, an array of replacement types, and an array of conformances.
The arrays must have the correct length for the given generic signature—equal to the
number of generic parameters for the replacement types array, and equal to the number
of conformance requirements for the conformances array. The conformances array must
satisfy an additional validity condition. Conformances happen to store their conforming
type and protocol. Each conformance in a substitution map must match the conformance
requirements of the generic signature as follows:

1. The conforming type of a conformance must be canonically equal to the result of
applying the substitution map to the subject type of the corresponding confor-
mance requirement.

2. The protocol of a conformance must be the same as the protocol on the right hand
side of the corresponding conformance requirement.

This variant of get substitution map is used when constructing a substitution map
from a deserialized representation, because a serialized substitution map is guaranteed to
satisfy the above invariants. It is also used when building a protocol substitution map,
because the shape is sufficiently simple—just a single replacement type and a single
conformance.
The second variant takes the input generic signature and a pair of callbacks:

1. The replacement type callbackmaps a generic parameter type to a replacement
type. It is invoked with each generic parameter type to populate the replacement
types array.

2. The conformance lookup callback maps a protocol conformance requirement
to a conformance. It is invoked with each conformance requirement to populate
the conformances array.

The conformance lookup callback takes three parameters:

1. The original type; this is the subject type of the conformance requirement.

2. The substituted type; this is the result of applying the substitution map to the
original type, which should be canonically equal to the conforming type of the
conformance that will be returned.

3. The protocol declaration named by the conformance requirement.

The callbacks can be arbitrarily defined by the caller. Several pre-existing “functors”
also implement common behaviors. For the replacement type callback,

1. The query substitution map functor looks up a generic parameter in an existing
substitution map.

144

7.3. Building Substitution Maps

2. The query type map functor looks up a generic parameter in an LLVM DenseMap.

For the conformance lookup callback,

1. The global conformance lookup functor performs a global conformance lookup
(Section 8.1).

2. The local conformance lookup functor performs a local conformance lookup
into another substitution map (Section 8.4).

3. The make abstract conformance functor asserts that the substituted type is a
type variable, type parameter or archetype, and returns an abstract conformance
(also in Section 8.4). It is used when it is known that the substitution map can be
constructed without performing any conformance lookups, as is the case with the
identity substitution map.

Specialized types only store their generic arguments, not conformances, so the context
substitution map of a specialized type is constructed by first populating a DenseMap

with the generic arguments of the specialized type and all of its parent types, and then
invoking the get substitution map operation with the query type map and global
conformance lookup functors.

The identity substitution map of a generic signature is constructed from a replacement
type callback which just returns the input generic parameter together with the make
abstract conformance functor.

Example 7.10. A substitution map which does not satisfy the invariants specified
above, and thus cannot be constructed. First, the generic signature:

<T where T: Sequence, T.[Sequence]Element: Comparable>:

And the substitution map:

Types

T := Array<Int>

Conformances

Array<Int>: Sequence

String: Comparable

The generic signature has two conformance requirements:

T: Sequence

T.[Sequence]Element: Comparable

145

7. Substitution Maps

Applying the substitution map to the subject type of each requirement produces the
expected conforming types:

T × substitution map = Array<Int>

T.[Sequence]Element × substitution map = Int

The actual conforming type of the second conformance violates our invariant:

Actual Expected Correct?

Array<Int> Array<Int> ✓
String Int ×

7.4. Nested Nominal Types

Nominal type declarations can appear inside other declaration contexts, subject to the
following restrictions:

1. Structs, enums and classes cannot be nested in generic local contexts.

2. Structs, enums and classes cannot be nested in protocols or protocol extensions.

3. Protocols cannot be nested in any declaration context other than a source file.

We’re going to explore the implementation limitations behind these restrictions, and
possible future directions for lifting them. (The rest of the book talks about what the
compiler does, but this section is about what the compiler doesn’t do.)

Types in generic local contexts This restriction is a consequence of a shortcoming in
the representation of a nominal type. Recall from Chapter 3 that nominal types and
generic nominal types store a parent type, and generic nominal types additionally store
a list of generic arguments, corresponding to the generic parameter list of the nominal
type declaration. This essentially means there is no place to store the generic arguments
from outer generic local contexts.

Listing 7.6 shows a nominal type nested inside of a generic function. The generic
signature of Nested contains the generic parameter T from the outer generic function
algorithm(). However, under our rules, the declared interface type of Nested is a
singleton nominal type, because Nested does not have its own generic parameter list,
and its parent context is not a nominal type declaration. This means there is no way to
recover a context substitution map for this type because the generic argument for T is
not actually stored anywhere.

In the source language, there is no way to specialize Nested; the reference to T inside
f() is always understood to be the generic parameter T of the outer function. However,

146

7.4. Nested Nominal Types

Listing 7.6.: A nominal type declaration in a generic local context

1 func f<T>(t: T) {

2 struct Nested {

3 let t: T

4

5 func printT() {

6 print(t)

7 }

8 }

9

10 Nested(t: t).printT()

11 }

12

13 func g() {

14 f(t: 123)

15 f(t: "hello")

16 }

inside the compiler, different generic specializations can still arise. If the two calls to
f() from inside g() are specialized and inlined by the SIL optimizer for example, the
two temporary instances of Nested must have different in-memory layouts, because in
one call T is Int, and in the other T is String.

A better representation for the specializations of nominal types would replace the
parent type and list of generic arguments with a single “flat” list that includes all outer
generic arguments as well. This approach could represent generic arguments coming
from outer local contexts without loss of information.

Luckily, this “flat” representation is already implemented in the Swift runtime. The
runtime type metadata for a nominal type includes all the generic parameters from
the nominal type declaration’s generic signature, not just the generic parameters of
the nominal type declaration itself. So while lifting this restriction would require some
engineering effort on the compiler side, it would be a backward-deployable and ABI-
compatible change.

Types in protocol contexts To allow struct, enum and class declarations to appear
inside protocols and protocol extensions, a decision needs to be made as to whether the
protocol Self type should be “captured” by the nested type.

If the nested type captures Self, the code shown in Listing 7.6 would become valid.
With this model, the Nested struct depends on Self, so it would not make sense to

147

7. Substitution Maps

Listing 7.7.: A nominal type declaration nested in a protocol context

1 protocol P {}

2

3 extension P {

4 struct Nested {

5 let value: Self

6

7 func method() {

8 print(value)

9 }

10 }

11

12 func f() {

13 Nested(value: self).method()

14 }

15 }

16

17 struct S: P {}

reference it as a member of the protocol itself, like P.Nested. Instead, Nested would
behave as if it was a member of every conforming type, like S.Nested above (or even
T.Nested, if T is a generic parameter conforming to P).
At the implementation level, this would mean that the generic signature of a nominal

type nested inside of a protocol context would include the protocol Self type, and the
entire parent type, for example S in S.Nested, would become the replacement type for
Self in the context substitution map.
The alternative approach would prohibit the nested type from referencing the protocol

Self type. The nested type’s generic signature would not include the protocol Self type,
and P.Nested would be a valid member type reference. The protocol would effectively
act as a namespace for the nominal types it contains, with the nested type not depending
on the conformance to the protocol in any way.

Protocols in other declaration contexts The final generalization is the ability to nest
protocols inside other declaration contexts, such as functions or nominal types. This can
be broken down into two cases:

1. Protocols inside non-generic declaration contexts.

2. Protocols inside generic declaration contexts.

148

7.5. Source Code Reference

Listing 7.8.: Protocol declaration nested inside other declaration contexts

1 struct Outer {

2 protocol P {

3 func f()

4 }

5 }

6

7 func generic<T>(_: T) {

8 protocol P {

9 // What does this mean?

10 func f(_: T)

11 }

12 }

Listing 7.8 shows both possibilities. The first case is a relatively straightforward; the
non-generic declaration contexts acts as a namespace to which the protocol declaration
is scoped.
In contrast, the second case would introduce significant complexity to the language

design, by allowing “generic protocols” with more generic parameters than just the
protocol Self type. Such a protocol would be what Haskell calls a “multi-parameter
type class.” Unlike the prior generalizations this one carries profound implications and
tradeoffs and it is not clear that it belongs in the Swift language.

7.5. Source Code Reference

Key source files:

• include/swift/AST/SubstitutionMap.h

• lib/AST/SubstitutionMap.cpp

Other source files:

• include/swift/AST/GenericSignature.h

• include/swift/AST/Type.h

• include/swift/AST/Types.h

Type class

See also Section 3.6.

149

https://github.com/apple/swift/tree/main/include/swift/AST/SubstitutionMap.h
https://github.com/apple/swift/tree/main/lib/AST/SubstitutionMap.cpp
https://github.com/apple/swift/tree/main/include/swift/AST/GenericSignature.h
https://github.com/apple/swift/tree/main/include/swift/AST/Type.h
https://github.com/apple/swift/tree/main/include/swift/AST/Types.h

7. Substitution Maps

• subst() applies a substitution map to this type and returns the substituted type.

TypeBase class

See also Section 3.6 and Section 6.5.

• getContextSubstitutionMap() returns this type’s context substitution map with
respect to the given DeclContext.

SubstitutionMap class

Represents an immutable, uniqued substitution map.
As with Type and GenericSignature, this class stores a single pointer, so substitution

maps are cheap to pass around as values. The default constructor SubstitutionMap()
constructs an empty substitution map. The implicit bool conversion tests for a non-
empty substitution map.
Accessor methods:

• empty() answers if this is the empty substitution map; this is the logical negation
of the bool implicit conversion.

• getGenericSignature() returns the substitution map’s input generic signature.

• getReplacementTypes() returns an array of Type.

• hasAnySubstitutableParams() answers if the input generic signature contains
at least one generic parameter not fixed to a concrete type; that is, it must be
non-empty and not fully concrete (see the areAllParamsConcrete() method of
GenericSignatureImpl from Section 6.5).

Recursive properties computed from replacement types:

• hasArchetypes() answers if any of the replacement types contain a primary
archetype or opened existential archetype.

• hasOpenedExistential() answers if any of the replacement types contain an
opened existential archetype.

• hasDynamicSelf() answers if any of the replacement types contain the dynamic
Self type.

Canonical substitution maps:

• isCanonical() answers if the replacement types and conformances stored in this
substitution map are canonical.

150

7.5. Source Code Reference

• getCanonical() constructs a new substitution map by canonicalizing the replace-
ment types and conformances of this substitution map.

Composing substitution maps (Section 7.2):

• subst() applies another substitution map to this substitution map, producing a
new substitution map.

Two overloads of the get() static method are defined for constructing substitution maps
(Section 7.3).

get(GenericSignature, ArrayRef<Type>, ArrayRef<ProtocolConformanceRef>)

builds a new substitution map from an input generic signature, an array of replacement
types, and array of conformances.

get(GenericSignature, TypeSubstitutionFn, LookupConformanceFn) builds a new
substitution map by invoking a pair of callbacks to produce each replacement type and
conformance.

TypeSubstitutionFn type alias

The type signature of a replacement type callback for SubstitutionMap::get().

using TypeSubstitutionFn

= llvm::function_ref<Type(SubstitutableType *dependentType)>;

The parameter type is always a GenericTypeParamType * when the callback is used
with SubstitutionMap::get().

QuerySubstitutionMap struct

A functor intended to be used with SubstitutionMap::get() as a replacement type
callback. Overloads operator() with the signature of TypeSubstitutionFn.
Constructed from a SubstitutionMap:

1 QuerySubstitutionMap{subMap}

QueryTypeSubstitutionMap struct

A functor intended to be used with SubstitutionMap::get() as a replacement type
callback. Overloads operator() with the signature of TypeSubstitutionFn.
Constructed from an LLVM DenseMap:

1 DenseMap<SubstitutableType *, Type> typeMap;

2

3 QueryTypeSubstitutionMap{typeMap}

151

7. Substitution Maps

LookupConformanceFn type alias

The type signature of a conformance lookup callback for SubstitutionMap::get().

using LookupConformanceFn = llvm::function_ref<

ProtocolConformanceRef(CanType origType,

Type substType,

ProtocolDecl *conformedProtocol)>;

LookUpConformanceInModule struct

A functor intended to be used with SubstitutionMap::get() as a conformance lookup
callback. Overloads operator() with the signature of LookupConformanceFn.

Constructed with a ModuleDecl *:

1 LookUpConformanceInModule{moduleDecl}

LookUpConformanceInSubstitutionMap struct

A functor intended to be used with SubstitutionMap::get() as a conformance lookup
callback. Overloads operator() with the signature of LookupConformanceFn.

Constructed with a SubstitutionMap:

1 LookUpConformanceInSubstitutionMap{subMap}

MakeAbstractConformance struct

A functor intended to be used with SubstitutionMap::get() as a conformance lookup
callback. Overloads operator() with the signature of LookupConformanceFn.

Constructed without arguments:

1 MakeAbstractConformance()

GenericSignature class

See also Section 6.5.

• getIdentitySubstitutionMap() returns the substitution map that replaces each
generic parameter with itself.

152

8. Conformances

A conformance describes how a type satisfies the requirements of a protocol. In the
previous chapter, you saw that conformances appear in substitution maps, populated
by a global conformance lookup operation. Now, we will discuss their structure and the
role that conformances play in type substitution, and look at global conformance lookup
in more detail. There are three kinds of conformance:

1. An invalid conformance denotes that a type does not actually conform to the
protocol.

2. An abstract conformance denotes that a type conforms to the protocol, but it
is not known where this conformance was declared. Described in Section 8.4.

3. A concrete conformance represents a conformance with a known definition.

Concrete conformances are further broken down into four sub-kinds, with the first two
sub-kinds being the main focus of this chapter:

1. A normal conformance represents the actual declaration of a conformance on a
type or extension.

2. A specialized conformance is how an arbitrary specialized type conforms to a
protocol.

3. A self conformance is how a protocol conforms to itself, which is only possible
in a few very special cases. Described in Section 15.2.

4. An inherited conformance is how a subclass conforms to a protocol when the
conformance was declared on the superclass. Described in Section 16.1.

Normal conformances Structs, enums and classes can conform to protocols. A normal
conformance represents the declaration of such a conformance. Normal conformances
are declared by referencing a protocol from the inheritance clause of a type or extension
declaration:

1 struct Horse: Animal {...}

2

3 struct Cow {...}

4 extension Cow: Animal {...}

153

8. Conformances

Each type or extension declaration has a list of local conformances, which are the normal
conformances declared on that type or extension. In the above, the struct declaration
Horse has a single local conformance. The struct declaration Cow does not have any
local conformances itself, but the extension of Cow has one.

Nominal type declarations have a conformance lookup table, which stores the local
conformances of the type and any of its extensions, together with conformances inherited
from the superclass, if the type declaration is a class declaration. Extension declarations
do not have a conformance lookup table of their own; their local conformances are part
of the extended type’s conformance lookup table. The conformance lookup table is used
to implement global conformance lookup. The rest of the compiler does not interact
directly with conformance lookup tables.

Broken down into constituent parts, a normal conformance stores the following:

• The type: the declared interface type of the conforming context.

• The protocol: this is the protocol being conformed to.

• The conforming context: either a nominal type declaration (if the conformance
is stated on the type) or an extension thereof (if the conformance is stated on an
extension).

• The generic signature: the generic signature of the conforming context. If the
conformance context is a nominal type declaration or an unconstrained extension,
this is the generic signature of the nominal type. If the conformance context is a
constrained extension, this generic signature will have additional requirements, and
the conformance becomes a conditional conformance. Conditional conformances
are described in Section 12.2.

• Type witnesses: a mapping from each associated type of the protocol to the
concrete type witnessing the associated type requirement. This is an interface
type written in terms of the generic signature of the conformance. Section 8.3 will
talk about type witnesses.

• Associated conformances: a mapping from the conformance requirements of
the requirement signature to a conformance of the substituted subject type to the
requirement’s protocol. Section 8.5 will talk about associated conformances.

• Value witnesses: for each value requirement of the protocol, the declaration
witnessing the requirement. This declaration is either a member of the conforming
nominal type, an extension of the conforming nominal type, or it is a default
implementation from a protocol extension. The mapping is more elaborate than
just storing the witness declaration; Chapter 17 goes into the details.

154

8.1. Conformance Lookup

Specialized conformances In Section 7.2, you saw that substitution maps apply to
types, other substitution maps, and conformances. Applying a non-identity substitution
map to a normal conformance produces a specialized conformance, which wraps the
underlying normal conformance together with the substitution map, which we call the
conformance substitution map:

normal conformance × substitution map = specialized conformance

The conformance substitution map is never the identity substitution map; applying the
identity substitution map to a normal conformance simply returns the original normal
conformance. This avoids the overhead of constructing a specialized conformance in
this case, and also has a nice mathematical interpretation: it ensures that the identity
substitution map actually acts as the identity on a normal conformance:

normal conformance × identity substitution map = normal conformance

Canonical conformances Like types and substitution maps, specialized conformances
are immutable and uniqued. A specialized conformance is canonical if the substitution
map is canonical. Canonicalizing a specialized conformance returns a new conformance
with the same underlying conformance, and the canonicalized conformance substitution
map. Normal conformances are always canonical.

8.1. Conformance Lookup

Conformances are typically found via global conformance lookup, which takes a type and
a protocol and returns a conformance. Global conformance lookup answers the question
“does a type conform to a protocol”—when the result is an invalid conformance, the
type does not conform, otherwise it conforms.
Global conformance lookup can be understood as the action of a protocol declaration

on the left of a type:

protocol declaration × type = conformance

All conformances store the conformed protocol and conforming type. The conforming
type of a valid conformance found by global conformance lookup is canonical-equal to
the type that was handed to the lookup operation (the two types might differ by type
sugar, so are not required to be pointer-equal). We can exhibit this with a commutative
diagram:

type conformance

look up conformance

get conforming type

155

8. Conformances

A commutative diagram is a diagram where every path with the same start and end
leads to the same result. The above commutative diagram shows two pairs of paths:

1. Starting from a type, we look up its conformance to a fixed protocol, and get the
conforming type of this conformance. This takes us back to the original type.

2. Starting from a conformance, we get its conforming type, and perform a global
conformance lookup with this type and our protocol. This gives us the original
conformance.

Global conformance lookup always returns a normal conformance when given the
declared interface type of a type declaration that directly conforms to the protocol:

protocol declaration × declared interface type = normal conformance

The conforming type of a normal conformance is the declared interface type; plugging
this information into our commutative diagram gives us the following:

declared interface type normal conformance

look up conformance

get conforming type

You will see more equations and commutative diagrams in the next section, after a brief
interlude where we discuss a conceptual difficulty.

Coherence In reality, our diagram above hand-waves away a significant complication.
Since a conformance can be declared on an extension, and the extended type might
be defined in a different module, it is possible that two modules may define the same
conformance in two different ways. Global conformance lookup is not guaranteed to be
coherent.
For example, imagine if there were two different conformances of some concrete type

K to Hashable. Then it would be possible for two different modules to construct values
of type Set<K> with incompatible hash functions; passing such a value from one module
to the other would result in undefined behavior.
For now, there’s no real answer to this dilemma. The compiler rejects duplicate

conformance definitions if an existing conformance is statically visible, so this scenario
cannot occur with Int and Hashable for instance, because the conformance of Int

to Hashable in the standard library is always visible, so any attempt to define a new
conformance would be diagnosed as an error.

156

8.1. Conformance Lookup

However, if the concrete type K is defined in some common module, and two separately-
compiled modules both define a conformance of K to Hashable, a module that imports
all three will observe both conformances statically, with unpredictable results.
A similar scenario can occur with library evolution. Suppose a library publishes the

concrete type K, and a third party defines a conformance of K to Hashable. If the library
vendor then adds their own conformance of K to Hashable, the previously-compiled client
might encounter incorrect behavior at runtime.
The global conformance lookup operation as implemented by the compiler actually

takes a module declaration as an input, along with the type and protocol. The intent
behind passing the module was that it should be taken into account somehow, perhaps
restricting the search to those conformances that are transitively visible via import
declarations, with an error diagnostic in the case of a true ambiguity. At the time of
writing, this module declaration is ignored.
The runtime equivalent of a global conformance lookup is a dynamic cast from a

concrete type to an existential type. Dynamic casts suffer from a similar ambiguity
issue. To be coherent, this dynamic cast operation would need to inspect something akin
to a module import graph reified at the call site to be able to disambiguate duplicate
conformances.
In the absence of proper compiler support for addressing this problem, there is a rule

of thumb that, if followed by Swift users, mostly guarantees coherence. The rule is that
when defining a conformance on an extension, either the extended type or the protocol
should be part of the current module.
That is, the following is fine, because our own type conforms to a standard library

protocol:

1 struct MyType {...}

2 extension MyType: Hashable {...}

This is fine too, because a standard library type conforms to our own protocol:

1 protocol MyProtocol {...}

2 extension Int: MyProtocol {...}

However the next example is potentially problematic; we’re defining the conformance
of a standard library type to a standard library protocol, and nothing prevents some
other module from declaring the same conformance:

1 extension String.UTF8View: Hashable {...}

A conformance where neither the conforming type nor the protocol is part of the
current module is called a retroactive conformance. Today, retroactive conformances are

157

8. Conformances

allowed without any restrictions. In a future compiler version, they might generate a
warning.
Unfortunately, avoiding retroactive conformances does not completely solve the issue

either, because there is another possible hole with class inheritance and library evolution.
Consider a framework which defines an open class and a protocol:

1 public protocol MyProtocol {}

2 open class BaseClass {}

A client might declare a subclass of BaseClass and conform it to MyProtocol, concluding
this it is safe to do so because the conforming type, DerivedClass, is owned by the client,
and thus this is not a retroactive conformance:

1 import OtherLibrary

2

3 class DerivedClass: BaseClass {}

4 extension DerivedClass: MyProtocol {}

However, in the next version of the framework, the framework author might decide to
conform BaseClass to MyProtocol. At this point, DerivedClass has two duplicate
conformances to MyProtocol; the inherited conformance from BaseClass, and the local
conformance of DerivedClass.

8.2. Conformance Substitution

If global conformance lookup returns a normal conformance when given the declared
interface type of a nominal type declaration, the natural question is what it should
return given an arbitrary specialized type of a nominal type declaration. As you might
guess, the answer is that it returns a specialized conformance.
Recall the following three equations:

1. First, the factorization of a specialized type into the declared interface type of some
nominal type declaration, together with a substitution map, from Section 7.1:

declared interface type × substitution map = specialized type

2. Next, the notation for global conformance lookup from the previous section:

protocol declaration × type = conformance

3. And finally, the fact that global conformance lookup returns a normal conformance
when given a declared interface type, also from the previous section:

protocol declaration × declared interface type = normal conformance

158

8.2. Conformance Substitution

We want to answer the question of what it means to perform a global conformance
lookup with an arbitrary specialized type:

protocol declaration × specialized type = ?

If we substitute equation (1) into the above, we get the following:

protocol declaration × specialized type

= protocol declaration ×
(

declared interface type × substitution map
)

Now, here’s the trick. A binary operation × is associative if the placement of parentheses
doesn’t matter; that is, if (A × B) × C = A × (B × C). We want global conformance
lookup and type substitution to be associative. This means we should be able to change
the placement of the parentheses in the above equation while getting the same result:

protocol declaration × specialized type

= protocol declaration ×
(

declared interface type × substitution map
)

=
(

protocol declaration × declared interface type
)
× substitution map

Now, by equation (3), the term inside the parentheses gives us a normal conformance:

protocol declaration × specialized type

= protocol declaration ×
(

declared interface type × substitution map
)

=
(

protocol declaration × declared interface type
)
× substitution map

= normal conformance × substitution map

So there you go—global conformance lookup with a specialized type returns a specialized
conformance, whose conformance substitution map is the context substitution map of
the specialized type.
Similarly, the conforming type of a specialized conformance is the specialized type we

get by applying the conformance substitution map to the conforming type of the normal
conformance; this has to be the case, because of our commutative diagram:

specialized type specialized conformance

conformance lookup

conforming type

159

8. Conformances

You’ve now seen what it means to apply a substitution map to a normal conformance,
and how this operation arises naturally in the implementation of global conformance
lookup. As it turns out, you can apply substitution maps to specialized conformances
as well.

specialized conformance × substitution map 2 = ?

(There are going to be two substitution maps in play now, the conformance substitution
map of the specialized conformance, and the substitution map being applied, so let’s
label them “substitution map 1” and “substitution map 2.”)
First, we need a notion of the output generic signature of a conformance; we require

that the input generic signature of the applied substitution map is the output generic
signature of the conformance. The output generic signature of a normal conformance
is the generic signature of the conformance context. The output generic signature of a
specialized conformance is the output generic signature of its conformance substitution
map. As with substitution maps and interface types, the output generic signature of a
specialized conformance isn’t actually stored; it is implicit from usage.
With this out of the way, we can proceed to derive our equation. First, we factor the

specialized conformance into a normal conformance together with a substitution map:

specialized conformance × substitution map 2

=
(

normal conformance × substitution map 1
)
× substitution map 2

Once again, we just move the parentheses around, because it intuitively appears to make
sense:

specialized conformance × substitution map 2

=
(

normal conformance × substitution map 1
)
× substitution map 2

= normal conformance ×
(

substitution map 1 × substitution map 2
)

Finally, we can simplify inside of the parentheses on the third line above, by composing
the two substitution maps. This gives us our answer: applying a substitution map to a
specialized conformance builds a new specialized conformance with the same underlying
normal conformance, and a new conformance substitution map obtained by composing
the old conformance substitution map with the given substitution map.
Recall that substitution map composition is associative:(

substitution map 1 × substitution map 2
)
× substitution map 3

= substitution map 1 ×
(

substitution map 2 × substitution map 3
)

160

8.3. Type Witnesses

The above together with everything else from this section can be combined into one final
identity. You just saw the same identity for normal conformances; it holds for specialized
conformances too:(

specialized conformance × substitution map 2
)
× substitution map 3

= specialized conformance ×
(

substitution map 2 × substitution map 3
)

8.3. Type Witnesses

A concrete type fulfills the associated type requirements of a protocol by declaring a
type witness for each associated type. Type witnesses are declared in one of four ways:

1. Via a member type declaration having the same name as the associated type.
Usually this member type is a type alias, but it is legal to use a nested nominal
type declaration as well. If the conforming type is a class, the member type may
also be defined in a superclass.

2. Via a generic parameter having the same name as the associated type. If the
conforming type is not generic but is nested inside of a generic context, a generic
parameter of the innermost generic context can be used.1

3. Via associated type inference, where it is implicitly derived from the declaration
of a witness to a value requirement.

4. Via a default type witness on the associated type declaration, which is used if
all else fails.

The conformance checker is responsible for resolving type witnesses and ensuring they
satisfy the requirements of the protocol’s requirement signature, as described earlier in
Section 6.1. The problem of checking whether concrete types satisfy generic requirements
is covered in Section 10.2.

Example 8.1. Listing 8.1 illustrates all four possibilities. In all cases other than the
first, the conformance checker synthesizes a type alias declaration with the same name
as the associated type. This type alias declaration is visible as a member of the concrete
conforming type. For this reason, it appears at first glance that the generic parameter
T is a member type of WithGenericParam<T>:

1 func squared(_ x: WithGenericParam<Int>.T) -> Int {

2 return x * x

3 }

1The latter being allowed was probably an oversight, but it’s the behavior implemented today.

161

8. Conformances

Listing 8.1.: Different ways of declaring a type witness in a conformance

1 protocol P {

2 associatedtype T = Int

3 func f(_: T)

4 }

5

6 extension P {

7 func f(_: T) {}

8 }

9

10 struct WithMemberType: P {

11 struct T {}

12 }

13

14 struct WithGenericParam<T>: P {}

15

16 struct WithInferredType: P {

17 func f(_: String) {}

18 }

19

20 struct WithDefault: P {}

162

8.3. Type Witnesses

However, the member type T is not the generic parameter declaration itself, but the
synthesized type alias declaration. If WithGenericParam did not declare a conformance
to P, there would be no member type named T, because generic parameter declarations
are not visible as member types.

Projection Given a conformance and an associated type of the conformed protocol,
we can ask the conformance for the corresponding type witness. The next section will
explain how type substitution of dependent member types uses the type witnesses of a
conformance, but first we need to develop the “algebra” of type witnesses.
We can understand getting a type witness out of a conformance as the action of an

associated type declaration (of a protocol) on the left of a conformance (to this protocol):

associated type × conformance = type witness

Normal conformances directly store type witnesses as interface types for the conforming
context’s generic signature; getting a type witness from a normal conformance projects
this stored value:

associated type × normal conformance = type witness

Next, we need to understand what it means to get a type witness from a specialized
conformance:

associated type × specialized conformance = ?

As it turns out, this is implemented by applying the conformance substitution map to
the corresponding type witness from the underlying normal conformance. To understand
why, we start by writing the specialized conformance as a substitution map applied to
a normal conformance:

associated type × specialized conformance

= associated type ×
(

normal conformance × substitution map
)

Then, we repeat our magic trick—we want this action to be associative, so we move the
parentheses around:

associated type × specialized conformance

= associated type ×
(

normal conformance × substitution map
)

=
(

associated type × normal conformance
)
× substitution map

163

8. Conformances

Figure 8.1.: Type witnesses of normal and specialized conformances

declared interface type specialized type

normal conformance specialized conformance

type witness specialized type witness

look up conformance

substitution

look up conformance

substitution

get type witness get type witness

substitution

Therefore, the problem of projecting a type witness of a specialized conformance reduces
to applying the conformance substitution map to a type witness of the underlying normal
conformance:

associated type × specialized conformance

= associated type ×
(

normal conformance × substitution map
)

=
(

associated type × normal conformance
)
× substitution map

= type witness × substitution map

The above equations show that getting a type witness of a specialized conformance fits
nicely with our notational formalism. Another way to convince yourself that this makes
sense is with a commutative diagram. Figure 8.1 shows a commutative diagram relating
global conformance lookup with getting a type witness from a specialized conformance:

1. Starting from the declared interface type of a nominal type declaration, we can
look up the conformance to a protocol, and get the type witness for an associated
type out of this conformance.

2. If we apply a substitution map to the declared interface type, we get a specialized
type. Global conformance lookup with the specialized type returns a specialized
conformance. Getting a type witness from the specialized conformance applies the
substitution map to the type witness of the normal conformance.

3. Each horizontal arrow applies the same substitution map, which is the context
substitution map of the specialized type.

164

8.4. Abstract Conformances

Figure 8.2.: Type witnesses of the conformances of Array<Element> and Array<Int> to
Sequence

Array<Element> Array<Int>

Array<Element>: Sequence Array<Int>: Sequence

Element Int

look up conformance

substitution

look up conformance

substitution

get type witness get type witness

substitution

We saw that the type witnesses of a normal conformance are written in terms of the
conforming context’s generic signature. For a specialized conformance, they are written
in terms of the output generic signature of the conformance substitution map.

Example 8.2. To make this concrete, say we look up the conformance of Array<Int> to
Sequence, and then get the type witness for the Element associated type. The declared
interface type of Array is Array<Element>, where Element is the generic parameter of
Array. The type witness of the Element associated type in the normal conformance of
Array to Sequence is the Element generic parameter type.
Our specialized type is Array<Int>. The context substitution map of Array<Int>

replaces Element with Int:

Types

Element := Int

Figure 8.2 shows the commutative diagram for this case. Each horizontal arrow in the
commutative diagram represents the application of this substitution map to a type or
conformance. Since the diagram is commutative, we can start at the top left and always
end up at the bottom right, independent of which of the three paths we take.

8.4. Abstract Conformances

An abstract conformance represents the conformance of a type parameter (or archetype)
to a protocol, where the type parameter is understood to satisfy requiresProtocol()

generic signature query of some generic signature:

protocol declaration × type parameter = abstract conformance

165

8. Conformances

The conforming type of an abstract conformance is a type parameter. Similar to normal
conformances and specialized conformances, we can show the relationship between an
abstract conformance and its conforming type with a commutative diagram:

type parameter abstract conformance

look up conformance

get conforming type

Abstract conformances allow us to formalize the behavior of type substitution with a
dependent member type:

dependent member type × substitution map = ?

Before we can solve the above, consider a bound dependent member type T.[P]A in
some generic signature, with base type T and associated type A of protocol P. If the
compiler was able to form this dependent member type, either by type resolution or
some other means, it necessarily follows that T conforms to P in the type parameter’s
generic signature. This allows us to factor the dependent member type into an associated
type declaration together with an abstract conformance:

[P]A × T: P = T.[P]A

In order words, dependent member types are the type witnesses of abstract conformances:

associated type × abstract conformance = dependent member type

This gives us the following equation:

dependent member type × substitution map

=
(

associated type × abstract conformance
)
× substitution map

Next we switch the parentheses around:

dependent member type × substitution map

=
(

associated type × abstract conformance
)
× substitution map

= associated type ×
(

abstract conformance × substitution map
)

166

8.4. Abstract Conformances

You saw how normal and specialized conformances are substituted in Section 8.2.
Now, it appears we need the ability to apply a substitution map to an abstract confor-
mance. This operation is called local conformance lookup. Whereas global conformance
lookup takes a specialized type and a protocol, local conformance lookup starts from
a substitution map, a protocol, and a type parameter for the substitution map’s input
generic signature.

Indeed, local conformance lookup is the missing piece of the puzzle for understanding
the implementation of type substitution with a dependent member type:

1. First, we factor the dependent member type into an associated type declaration
together with an abstract conformance. The abstract conformance can be further
broken down into a conforming type (the dependent member type’s base type) and
a protocol (the associated type declaration’s parent protocol).

2. Next, we perform a local conformance lookup into the substitution map, with the
base type and protocol.

3. Finally, we get the associated type declaration’s corresponding type witness from
the conformance returned by local conformance lookup.

Local conformance lookup is compatible with global conformance lookup, in the following
sense: a local conformance lookup with some substitution map, base type and protocol
returns the same conformance as first applying the substitution map to the base type,
followed by a global conformance lookup with the substituted type and our protocol.
This can be expressed in our formalism with the following equation:

abstract conformance × substitution map

=
(

protocol declaration × type parameter
)
× substitution map

= protocol declaration ×
(

type parameter × substitution map
)

= protocol declaration × substituted type

Local conformance lookup is not actually implemented in terms of global conformance
lookup, though. Instead, the result is derived directly from the conformances stored in
the substitution map itself.

The simplest case is when the abstract conformance directly names a conformance
requirement in the substitution map’s input generic signature; local conformance lookup
returns the corresponding conformance stored in the substitution map. In the general
case, local conformance lookup derives the conformance via a conformance path. This
will be revealed in Chapter 13.

167

8. Conformances

Listing 8.2.: Applying a substitution map to a dependent member type

1 struct Concatenation<Elements: Sequence>

2 where Elements.Element: Sequence {

3 typealias InnerIterator = Elements.Element.Iterator

4 }

5

6 // What is the type of ‘iter’?

7 let iter: Concatenation<Array<Array<Int>>.InnerIterator = ...

Example 8.3. Listing 8.2 shows an example of dependent member type substitution.2

We’re going to work through how the compiler derives the type of the iter variable.
The type annotation references the InnerIterator member type alias with a base type
of Concatenation<Array<Array<Int>>, so we need to apply the context substitution
map of this base type to the underlying type of the type alias declaration.

The generic signature of Concatenation is the following:

<Elements where Elements: Sequence,

Elements.[Sequence]Element: Sequence>

The context substitution map of Concatenation<Array<Array<Int>> is a substitution
map for the above input generic signature:

Types

Elements := Array<Array<Int>>

Conformances

Array<Array<Int>>: Sequence

Array<Int>: Sequence

The underlying type of the InnerIterator type alias is the bound dependent member
type Elements.[Sequence]Element.[Sequence]Iterator. To apply our substitution
map to this dependent member type, the compiler performs the three steps outlined
earlier in this section:

1. The base type of the dependent member type is Elements.[Sequence]Element,
and the associated type Iterator is defined in the Sequence protocol. Therefore
the abstract conformance is

Elements.[Sequence]Element: Sequence

2Are you getting bored of endless variations on Array<Int> yet? Feel free to suggest more varied
examples!

168

8.4. Abstract Conformances

2. Applying the substitution map to this abstract conformance performs a local con-
formance lookup into the substitution map. The conforming type and protocol of
the abstract conformance is exactly equal to the second conformance requirement
in the generic signature, so the local conformance lookup returns the conformance
Array<Int>: Sequence.

3. The final step projects the type witness for Iterator from this conformance. This
is a specialized conformance, with the conformance substitution map:

Types

Element := Int

Recall that projecting a type witness from a specialized conformance is defined by
first projecting the type witness from the underlying normal conformance, in our
case Array<Element>: Sequence, and then applying the conformance substitution
map, shown above. The type witness for Iterator in our normal conformance is
an interface type written with respect to the generic signature of Array, which is
<Element>:

IndexingIterator<Array<Element>>

Applying the conformance substitution map from our specialized conformance to
this interface type replaces the Element generic parameter with Int:

IndexingIterator<Array<Int>>

So the type of iter is IndexingIterator<Array<Int>>.

Example 8.4. If you’re particularly attentive, you’ll remember from Section 7.3 that
the construction of the context substitution map of a specialized type is a little tricky,
because we have to recursively compute the substituted subject type of each conformance
requirement in the generic signature and then perform a global conformance lookup. In
the previous example, the generic signature of Concatenation has two conformance
requirements, and their original and substituted subject types are as follows:

Elements ⇒ Array<Array<Int>>

Elements.[Sequence]Element ⇒ Array<Int>

The computation of each substituted subject type can be understood as applying the
partially-constructed context substitution map that has been built so far to each original
subject type.

169

8. Conformances

For the first subject type, the substitution trivially projects the replacement type of
the Elements generic parameter:

Elements ×

Types

Elements := Array<Array<Int>>

Conformances

—
—

= Array<Array<Int>>

The second time around, the original subject type is itself a dependent member type, so
type substitution recursively performs the same dance with a local conformance lookup
and type witness projection—if you like, you can work this one out with pen and paper
to convince yourself that it is so:

Elements.[Sequence]Element ×

Types

Elements := Array<Array<Int>>

Conformances

Array<Array<Int>>: Sequence

—

= Array<Int>

Protocol substitution maps Recall the protocol substitution map construction from
Section 7.1, which wraps a conformance T: P in a substitution map for the protocol’s
generic signature <Self where Self: P>. Suppose that our protocol P declares an
associated type A, and the type witness for A in the conformance T: P is some type X.
We can now show that the following two are equivalent:

1. Projecting the type witness for A from the conformance T: P:

[P]A × T: P = X

2. Applying the protocol substitution map to the declared interface type of A, which
is the dependent member type Self.[P]A:

Self.[P]A ×

Types

Self := T

Conformances

T: P

= X

To see why, we need to recall two facts. First, the dependent member type Self.[P]A

can be written as the type witness of A in the abstract conformance Self: P. Second,

170

8.5. Associated Conformances

applying the protocol substitution map to Self: P performs a local conformance lookup
which simply projects the original conformance from the substitution map. Therefore,
we have:

Self.[P]A ×

Types

Self := T

Conformances

T: P

=
(

[P]A × Self: P
)
×

Types

Self := T

Conformances

T: P

= [P]A ×

 Self: P ×

Types

Self := T

Conformances

T: P


= [P]A × T: P

= X

8.5. Associated Conformances

There is an interesting duality between substitution maps and (normal) conformances,
illustrated in Table 8.1.
A substitution map records a replacement type for each generic parameter of a generic

signature, and as you saw in the previous section, a normal conformance records a type
witness for each associated type of a protocol.
A substitution map also stores a conformance for each conformance requirement in

its generic signature. A normal conformance stores an associated conformance for each
conformance requirement in the protocol’s requirement signature.
Recall from Section 6.1 that the printed representation of a requirement signature

looks like a generic signature with a single Self generic parameter. For example, here
is the abridged requirement signature of the standard library’s Collection protocol:

<Self where Self: Sequence , Self.Index: Comparable , ...>

The special case of an associated conformance requirement with a subject type of Self
represents a protocol inheritance relationship, as you already saw in Section 6.1. Other
associated conformance requirements constrain the protocol’s associated types.

171

8. Conformances

Table 8.1.: Duality between substitution maps and conformances

Substitution map Normal conformance

Input generic signature Requirement signature
Generic parameter Associated type declaration
Replacement type Type witness
Conformance requirement Associated conformance requirement
Conformance in substitution map Associated conformance

The conformance checker populates the associated conformance mapping in a normal
conformance by computing the substituted subject type of each associated conformance
requirement, and then performing a global conformance lookup with this subject type.
This is analogous to the conformance lookup performed during the construction of a
substitution map (Section 7.3).
The substituted subject type is obtained by applying the protocol substitution map

to the subject type of each associated conformance requirement. For example, in the
conformance of Array<Element> to Collection, the substituted subject type of the
requirement Self: Sequence is just the conforming type:

Self ×

Types

Self := Array<Element>

Conformances

Array<Element>: Collection

= Array<Element>

The substituted subject type of Self.Index is the type witness for Index, which is Int:

Self.Index ×

Types

Self := Array<Element>

Conformances

Array<Element>: Collection

= [Collection]Index × Array<Element>: Collection

= Int

With the substituted subject types on hand, the conformance checker then performs a
global conformance lookup to find each associated conformance:

Sequence × Array<Element> = Array<Element>: Sequence

Comparable × Int = Int: Comparable

172

8.5. Associated Conformances

Notation We’re going to use the notation (Self.Index: Comparable) for associated
conformance requirements. The parentheses will serve as a visual reminder that they are
different from abstract conformances, which use the notation T: P. The distinction is
important; an abstract conformance describes a type parameter that is known to conform
to a protocol in some generic signature (possibly as a non-trivial consequence of other
requirements), whereas an associated conformance requirement is a specific requirement
directly appearing in a protocol’s requirement signature.

Projection Projecting an associated conformance from a normal conformance can be
understood as the action of an associated conformance requirement (from a protocol’s
requirement signature) on the left of a normal conformance (to this protocol):

conformance requirement × normal conformance = associated conformance

With a specialized conformance, we do the same thing as when getting a type witness;
first, we get the associated conformance from the underlying normal conformance, and
then we apply the conformance substitution map:

conformance requirement × specialized conformance

= conformance requirement ×
(

normal conformance × substitution map
)

=
(

conformance requirement × normal conformance
)
× substitution map

= associated conformance × substitution map

Now we can project associated conformances from normal conformances and specialized
conformances. Last but not least, we need to define associated conformance projection
from an abstract conformance. Just as the type witnesses of an abstract conformance
are dependent member types, associated conformances of an abstract conformance are
other abstract conformances:

(Self.[P]A: Q) × T: P = T.[P]A : Q

Example 8.5. The associated conformances of a normal conformance can themselves
be any kind of conformance, including normal, specialized or abstract. Listing 8.3 shows
these possibilities. The protocol P states three associated conformance requirements, and
each of the associated conformances of the normal conformance S<T>: P are a different
kind of conformance:

Requirement Associated conformance Kind

A: Equatable Int: Equatable Normal
B: Equatable Array<Int>: Equatable Specialized
C: Equatable T: Equatable Abstract

173

8. Conformances

Listing 8.3.: Different kinds of associated conformances

1 protocol P {

2 associatedtype A: Equatable

3 associatedtype B: Equatable

4 associatedtype C: Equatable

5 }

6

7 struct S<T: Equatable>: P {

8 typealias A = Int

9 typealias B = Array<Int>

10 typealias C = T

11 }

The case where the associated conformance is abstract is important, because it arises
when the type witness is a type parameter of the conforming type’s generic signature.
Now consider what happens when we project the associated conformance (C: P) from

the specialized conformance S<String>: P:

(C: P) × S<String>: P

=
(

(C: P) × S<T>: P
)
×

Types

T := String

Conformances

String: Equatable

= T: Equatable ×

Types

T := String

Conformances

String: Equatable

The associated conformance projection operation actually turns around and reduces to
a local conformance lookup into the substitution map, which gives us the final result:

T: Equatable ×

Types

T := String

Conformances

String: Equatable

= String: Equatable

This has some unexpected consequences, which are explored in Section 13.1.

174

8.6. Source Code Reference

8.6. Source Code Reference

Key source files:

• include/swift/AST/ProtocolConformanceRef.h

• include/swift/AST/ProtocolConformance.h

• lib/AST/ProtocolConformanceRef.cpp

• lib/AST/ProtocolConformance.cpp

Other source files:

• include/swift/AST/DeclContext.h

• include/swift/AST/Module.h

• lib/AST/ConformanceLookupTable.h

• lib/AST/ConformanceLookupTable.cpp

• lib/AST/Module.cpp

IterableDeclContext class

Base class inherited by NominalTypeDecl and ExtensionDecl.

• getLocalConformances() returns a list of conformances directly declared on this
nominal type or extension.

NominalTypeDecl class

See also Section 4.4.

• getAllConformances() returns a list of all conformances declared on this nominal
type, its extensions, and inherited from its superclass, if any.

ConformanceLookupTable class

A conformance lookup table for a nominal type. Every NominalTypeDecl has a private
instance of this class, but it is not exposed outside of the global conformance lookup
implementation.

ModuleDecl class

See also Section 2.6.

175

https://github.com/apple/swift/tree/main/include/swift/AST/ProtocolConformanceRef.h
https://github.com/apple/swift/tree/main/include/swift/AST/ProtocolConformance.h
https://github.com/apple/swift/tree/main/lib/AST/ProtocolConformanceRef.cpp
https://github.com/apple/swift/tree/main/lib/AST/ProtocolConformance.cpp
https://github.com/apple/swift/tree/main/include/swift/AST/DeclContext.h
https://github.com/apple/swift/tree/main/include/swift/AST/Module.h
https://github.com/apple/swift/tree/main/lib/AST/ConformanceLookupTable.h
https://github.com/apple/swift/tree/main/lib/AST/ConformanceLookupTable.cpp
https://github.com/apple/swift/tree/main/lib/AST/Module.cpp

8. Conformances

Figure 8.3.: The ProtocolConformance class hierarchy

ProtocolConformance

RootProtocolConformance

NormalProtocolConformance

SelfProtocolConformance

InheritedProtocolConformance

SpecializedProtocolConformance

• lookupConformance() returns the conformance of a type to a protocol. This is
the a global conformance lookup operation.

ProtocolConformanceRef class

A protocol conformance. Stores a single pointer, and is cheap to pass around by value.

• isInvalid() answers if this is an invalid conformance reference, meaning the type
did not actually conform to the protocol.

• isAbstract() answers if this is an abstract conformance reference.

• isConcrete() answers if this is a concrete conformance reference.

• getConcrete() returns the ProtocolConformance instance if this is a concrete
conformance.

• getRequirement() returns the ProtocolDecl instance if this is an abstract or
concrete conformance.

• subst() returns the protocol conformance obtained by applying a substitution
map to this conformance.

ProtocolConformance class

A concrete protocol conformance. This class is the root of a class hierarchy shown in
Figure 8.3. Concrete protocol conformances are allocated in the AST context, and are
always passed by pointer.

• getType() returns the conforming type.

• getProtocol() returns the conformed protocol.

176

8.6. Source Code Reference

• getTypeWitness() returns the type witness for an associated type.

• getAssociatedConformance() returns the associated conformance for a confor-
mance requirement in the protocol’s requirement signature.

• subst() returns the protocol conformance obtained by applying a substitution
map to this conformance.

RootProtocolConformance class

Abstract base class for NormalProtocolConformance and SelfProtocolConformance.
Inherits from ProtocolConformance.

NormalProtocolConformance class

A normal protocol conformance. Inherits from RootProtocolConformance.

• getDeclContext() returns the conforming declaration context, either a nominal
type declaration or extension.

• getGenericSignature() returns the generic signature of the conforming context.

• finishSignatureConformances() computes the associated conformances of this
conformance. Not intended to be called directly.

SpecializedProtocolConformance class

A specialized protocol conformance. Inherits from ProtocolConformance.

• getGenericConformance() returns the underlying normal conformance.

• getSubstitutionMap() returns the conformance substitution map.

177

9. Generic Environments

In Chapter 3, type parameters and archetypes were introduced as two kinds of “abstract
types.” So far, we’ve only talked about type parameters, which appear in the interface
types of declarations. Archetypes appear in the types of expressions inferred by the
expression type checker, and in the SIL instructions constructed by lowering expressions
to SIL.
To understand how archetypes are different from type parameters, consider two key

properties of type parameters:

1. Type parameters only have meaning with respect to their generic signature. For
example, generic signature queries (Section 6.4) are called with a generic signature
together with a type parameter.

2. In a generic signature, two type parameters that are not canonical-equal might still
belong to the same equivalence class, and be reduced-equal. Type parameters can
represent the different “spellings” which are equivalent as a result of same-type
requirements. This gives the two levels of equality on interface types: canonical
equality, and reduced equality with respect to a generic signature.

An archetype represents a reduced type parameter in a specific generic environment.
Unlike type parameters, they are self-describing, since they point back at their parent
generic environment. The underlying type parameter of an archetype is always reduced,
so an equivalence class of type parameters is represented by a single archetype in a given
generic environment.
Recall that a type containing type parameters is called an interface type. Similarly,

a type containing archetypes is called a contextual type. A pair of operations define a
mapping between interface types and contextual types:

• Mapping into an environment transforms an interface type into a contextual
type by replacing the interface type’s type parameters with archetypes. Any type
parameters that are not reduced are replaced by their reduced type first. This
mapping is performed with respect to a fixed generic environment.

• Mapping out of an environment transforms a contextual type into an interface
type by replacing each archetype with the reduced type parameter it represents.
This operation does not take a generic environment; all archetypes know their
interface type.

179

9. Generic Environments

There are three kinds of generic environment:

• Every generic signature has exactly one primary generic environment. The
archetypes in the primary environment are called primary archetypes. Primary
archetypes represent the generic parameters of a function inside of a function body,
both in AST statement and expression nodes, and in the SIL instructions of a
SIL function. Primary generic environments preserve the sugared names of generic
parameters for the printed representation of an archetype, so two canonically-equal
but not pointer-equal generic signatures will instantiate distinct primary generic
environments.

generic signature ⇔ primary environment

• When a declaration has an opaque return type, an opaque generic environment
is created for each unique substitution map of the declaration’s generic signature.
The archetypes of this environment are used for both the declaration and references
to the declaration’s opaque result type. These are discussed in Chapter 14.

opaque type declaration × substitution map = opaque environment

• An opened generic environment is created when an existential value is opened
inside an expression. Opened archetypes represent the concrete payload of a value
of existential type. A call site where an existential value is opened will instantiate
a unique opened generic environment, and the usage of the opened archetypes is
scoped to the call’s argument expressions. Opened archetypes are discussed in
Chapter 15.

generic signature × existential type × UUID = opened environment

A generic environment contains a lazily-populated mapping from the reduced type
parameters of its generic signature to archetypes. The archetypes instantiated by a
generic environment are not pointer-equal or canonical-equal to the archetypes of any
other generic environment.

Motivation You might wonder why archetypes exist at all, when at first glance, they
appear equivalent to a reduced type parameter together with a generic signature. In
the case of primary archetypes at least, the reason is partly historical. However, the
additional indirection provided by creating multiple generic environments from a single
generic signature allows archetypes to represent abstract types which are not described
by the generic parameters that are in the scope of a generic declaration, namely opaque
return types and existential types.

180

Local requirements The local requirements of an archetype describe the behavior of
the archetype’s underlying type parameter in the generic signature of the archetype’s
generic environment. Local requirements are stored inside the archetype. They are
derived when the archetype is first constructed within a generic environment using the
generic signature queries of Section 6.4:

• Required protocols: a minimal and canonical list of protocols the archetype is
known to conform to, from the getRequiredProtocols() generic signature query.

• Superclass bound: an optional superclass type that the archetype is known
to be a subclass of, computed by mapping the interface type returned by the
getSuperclassBound() generic signature query into the generic environment.

• Requires class flag: a boolean indicating if the archetype is class-constrained,
computed from the requiresClass() generic signature query.

• Layout constraint: an optional layout constraint the archetype is known to
satisfy, computed from the getLayoutConstraint() generic signature query.

There is no equivalent of the getConcreteType() generic signature query in the world of
archetypes. Archetypes represent reduced type parameters, and type parameters fixed
to a concrete type are not reduced. If a generic signature fixes a type parameter to a
concrete type, mapping the type parameter into an environment will first replace the
type parameter with its concrete type, and then recursively map the resulting concrete
type into the environment. If the concrete type contains type parameters, they will be
replaced with archetypes (or concrete types, if they are themselves fixed to concrete
types).
For the same reason, generic signature queries to operate on reduced types do not have

equivalents in the world of archetypes. Reduced types are computed as part of mapping
an interface type into a generic environment. Since archetypes represent reduced type
parameters, the three notions of pointer, canonical and reduced equality collapse into
one. Contextual types that contain archetypes may still differ by type sugar in other
positions, however canonical equality is sufficient to determine if two contextual types
represent the same reduced type.

Global conformance lookup In Section 8.1, we introduced global conformance lookup
on nominal types. It generalizes to archetypes in a straightforward way:

1. If the archetype conforms abstractly via a protocol conformance requirement,
global conformance lookup returns an abstract conformance.

2. If the archetype conforms concretely via a superclass requirement, global con-
formance lookup recursively calls itself with the archetype’s superclass type and
returns an inherited conformance (Section 16.1).

181

9. Generic Environments

Figure 9.1.: A generic signature with multiple generic environments

Primary environment

Opened environment #1

Opened environment #2

Opaque environment #1

Opaque environment #2

...

<T where T: P>

Primary archetype T

Opened archetype T #1

Opened archetype T #2

Opaque archetype T #1

Opaque archetype T #2

Qualified name lookup Continuing the trend of operations on concrete types that also
support archetypes, an archetype can be used as the base type of a qualified name
lookup. Recall the notion of a reachable declaration context from Section 7.1. The
reachable declaration contexts of an archetype are the protocols it conforms to, the class
declaration of its superclass type, and any protocols the superclass conforms to.

Context substitution map An archetype can serve as the base type when computing a
context substitution map for a declaration context. The declaration context can either
be a protocol context or a class context. In the case of a protocol context, the archetype
can conform abstractly or concretely, as described above; a protocol substitution map
is constructed from the archetype and the conformance returned by global conformance
lookup. The case where the declaration context is a class is handled by a small addition
to Algorithm 16.1. Before proceeding with the main algorithm, we first check if the type
T is an archetype, and replace it with the archetype’s superclass type. The class context
must be the class declaration (or an extension) of some ancestor class of the archetype’s
superclass requirement.

Invariants It is unwise to mix interface types and contextual types. Generally, when
talking about the external interface of a declaration, you should use interface types,
and when talking about types appearing inside the body of a function, you should use
contextual types. A pair of recursively-computed properties distinguish interface types
from archetypes:

hasTypeParameter() answers if the type contains a type parameter.

182

9.1. Primary Archetypes

hasArchetype() answers if the type contains a primary or opened archetype. Types
containing opaque archetypes do not respond with true to this call, for reasons
that are explained later.

These predicates should be used in assertions to establish invariants. Generally, the
predicate you assert is the negation of the opposite predicate. If your function only
operations on interface types, you should check for the absence of archetypes; if your
function only expects contextual types, you should check for the absence of type param-
eters. This allows for fully-concrete types, which contain neither type parameters nor
archetypes.
Mapping a type into an environment asserts that the input type does not contain

archetypes, and similarly mapping a type out of an environment asserts that the input
type does not contain type parameters. This means you cannot call these operations
“just in case”; you need to establish that you’re dealing with the correct kind of type
upfront with an additional check or assertion. Furthermore, mapping a type out of
an environment asserts that the type does not contain opened archetypes. Since the
type parameter of an opened archetype does not correspond to a type parameter in the
declaration’s generic signature, mapping an opened archetype out of its environment is
not a meaningful operation.

9.1. Primary Archetypes

Every generic signature stores its primary generic environment. The archetypes of a
primary generic environment are called primary archetypes.

reduced type parameter × generic signature = primary archetype

Example 9.1. Consider this generic function:

1 func sum<S: Sequence<Int>>(_ seq: S) -> Int {

2 ...

3 }

The function’s generic signature:

<S where S: Sequence, S.[Sequence]Element == Int>

We can write four type parameters for this generic signature:

S

S.[Sequence]Element

S.[Sequence]Iterator

S.[Sequence]Iterator.[IteratorProtocol]Element

183

9. Generic Environments

The type parameters S and S.[Sequence]Iterator are reduced, so they map to two
distinct archetypes [[S]] and [[S.[Sequence]Iterator]] in the function’s primary generic
environment. The other two type parameters not reduced, because they are fixed to the
concrete type Int. Mapping them into the environment produces Int.

Contextual types are substitutable in the same way as interface types. Applying a
substitution map to a contextual type is defined by first mapping the contextual type
out of its environment.

contextual type × substitution map = interface type × substitution map

Thus, there is no distinction between substitution maps operating on interface types
and contextual types. However, there is a distinction when you look at the replacement
types that are output by the substitution. We can define an interface substitution map
as one where the replacement types are interface types, and a contextual substitution
map as one where the replacement types are contextual types. Applying an interface
substitution map to an interface type or contextual type always produces an interface
type. Applying a contextual substitution map to an interface type or contextual type
always produces a contextual type:

interface type × interface substitution map = substituted interface type

contextual type × interface substitution map = substituted interface type

interface type × contextual substitution map = substituted contextual type

contextual type × contextual substitution map = substituted contextual type

We saw in Section 7.2 that every generic signature has an identity substitution map, and
applying the identity substitution map to an interface type leaves the type unchanged:

interface type × identity substitution map = interface type

Every generic environment has a forwarding substitution map that replaces each generic
parameter with the generic parameter mapped into the environment. The forwarding
substitution map plays the role of an identity with contextual types. Applying the
forwarding substitution map to a contextual type leaves the type unchanged:

contextual type × forwarding substitution map = contextual type

What happens if you apply the identity substitution map to a contextual type? Applying
any substitution map to a contextual type first maps it out of its environment, producing
an interface type, and the identity substitution map leaves all type parameters in this
interface type unchanged. Thus, applying the identity substitution map to a contextual
type is the same as mapping the contextual type out of its environment:

contextual type × identity substitution map = interface type

184

9.1. Primary Archetypes

There is one final combination. Applying the forwarding substitution map to an interface
type replaces all type parameters with archetypes, so it is the same operation as mapping
the interface type into the environment:

interface type × forwarding substitution map = contextual type

The replacement types of a substitution map can be mapped into an environment by
applying the forwarding substitution map for the appropriate generic environment on
the right:

interface substitution map × forwarding substitution map

= contextual substitution map

Applying an interface substitution map and then mapping the result into an environment
has the same effect has applying the corresponding contextual substitution map:(

interface type × interface substitution map
)
× generic environment

= interface type ×
(

interface substitution map × generic environment
)

= interface type × contextual substitution map

Another way to map the replacement types of a contextual substitution map out of their
environment is to apply the identity substitution map on the right. However, this requires
finding the output generic signature for the substitution map. Just as contextual types
can be mapped out of an environment without providing the environment, substitution
maps support a map replacement types out of environment operation.

Archetypes are not “inherited” There’s a potential pitfall worth mentioning. Recall
that when generic declarations nest, the inner declaration inherits the generic parameters
and requirements of the outer declaration, possibly adding new generic parameters or
requirements:

1 func myAlgorithm<S: Sequence>(_ seq: S) where S.Element: Comparable {

2 func helper<T: Sequence>(_ t: T) where T.Element == S {

3 let s1: S = ...

4 print(s1)

5 }

6

7 let s2: [S] = [seq]

8 helper(s2)

9 }

185

9. Generic Environments

The inner helper() function has a distinct generic signature, and therefore a distinct
generic environment, from the outer complexAlgorithm() function. In particular, the
outer function’s generic parameter S maps to two different archetypes inside the two
declarations; say, [[S]]1 and [[S]]2. The type of the expression s1 in print(s1) is [[S]]1,
and the type of s2 in helper(s2) is [[S]]2. The call to helper() supplies a substitution
map which replaces the generic parameter S with the archetype [[S]]2, and T with the
contextual type Array<[[S]]2>.

The only case where a generic environment is inherited by an inner declaration is
if the inner declaration is not “more generic” in any way; it does not declare generic
parameters, or a where clause. As another example, anonymous closure expressions
always inherit the generic environment of the outer declaration, because they cannot be
generic except by referencing outer generic parameters.

When implementing type checker logic for nested function declarations, take care to
map types into the correct generic environment, corresponding to the exact declaration
where they will be used.

9.2. Source Code Reference

GenericEnvironment class

A generic environment. Instances are allocated in the AST context, and passed by
pointer.

• getGenericSignature() returns this generic environment’s generic signature.

• mapTypeIntoContext() returns the contextual type obtained by mapping an in-
terface type into this generic environment.

• getForwardingSubstitutionMap() returns a substitution map for mapping each
generic parameter to its contextual type—an archetype, or a concrete type if the
generic parameter is fixed to a concrete type via a same-type requirement.

GenericSignature class

See also Section 6.5.

• getGenericEnvironment() returns the primary generic environment associated
with this generic signature.

TypeBase class

See also Section 3.6.

186

9.2. Source Code Reference

• mapTypeOutOfContext() returns the interface type obtained by mapping this con-
textual type out of its generic environment.

SubstitutionMap class

See also Section 7.5.

• mapReplacementTypesOutOfContext() returns the substitution map obtained by
mapping this substitution map’s replacement types and conformances out of their
generic environment.

ProtocolConformanceRef class

See also Section 8.6.

• mapConformanceOutOfContext() returns the protocol conformance obtained by
mapping this protocol conformance out of its generic environment.

DeclContext class

See also Section 4.4.

• getGenericEnvironmentOfContext() returns the generic environment of the in-
nermost generic declaration containing this declaration context.

• mapTypeIntoContext() Maps an interface type into the primary generic environ-
ment for the innermost generic declaration. If at least one outer declaration context
is generic, this is equivalent to:

1 dc->getGenericEnvironmentOfContext()->mapTypeIntoContext(type);

For convenience, the DeclContext version of mapTypeIntoContext() also handles
the case where no outer declaration is generic. In this case, it returns the input
type unchanged, after asserting that it does not contain any type parameters (since
type parameters appearing outside of a generic declaration are nonsensical).

187

Part II.

Odds and Ends

189

10. Type Resolution

10.1. Identifier Type Representations

10.2. Checking Generic Arguments

10.3. Protocol Type Aliases

10.4. Source Code Reference

191

11. Building Generic Signatures

11.1. Requirement Inference

11.2. Desugared Requirements

11.3. Minimal Requirements

11.4. Source Code Reference

193

12. Extensions

12.1. Constrained Extensions

12.2. Conditional Conformances

12.3. Source Code Reference

195

13. Conformance Paths

13.1. Recursive Conformances

197

14. Opaque Return Types

14.1. Opaque Archetypes

14.2. Referencing Opaque Archetypes

199

15. Existential Types

15.1. Opened Existentials

15.2. Self-Conforming Protocols

201

16. Class Inheritance

Algorithm 16.1 (Iterated superclass type). As input, takes a class type T and a super-
class declaration D. Returns the superclass type of T for D.

1. Let C be the class declaration referenced by T. If C = D, return T.

2. If C does not have a superclass type, fail with an invariant violation; D is not
actually a superclass of T.

3. Otherwise, apply the context substitution map of T to the superclass type of C.
Assign this new type to T, and go back to Step 1.

16.1. Inherited Conformances

16.2. Override Checking

203

17. Witness Thunks

205

Part III.

The Requirement Machine

207

18. Property Map

209

Bibliography

[1] N. Cook, N. Chandler, and M. Ricketson, “SE-0281: @main: Type-based program
entry points,” 2020. [Online]. Available: https://github.com/apple/
swift-evolution/blob/main/proposals/0281-main-attribute.md

[2] “Swift intermediate language (SIL),” 2016. [Online]. Available:
https://github.com/apple/swift/blob/main/docs/SIL.rst

[3] A. Zhilin, “SE-0077: Improved operator declarations,” 2016. [Online]. Available:
https://github.com/apple/swift-evolution/blob/main/proposals/
0077-operator-precedence.md

[4] T. Allevato and D. Gregor, “SE-0091: Improving operator requirements in
protocols,” 2016. [Online]. Available: https://github.com/apple/swift-evolution/
blob/main/proposals/0091-improving-operators-in-protocols.md

[5] D. Gregor, “Request evaluator,” 2018. [Online]. Available:
https://github.com/apple/swift/blob/main/docs/RequestEvaluator.md

[6] J. Rose, “Dependency analysis,” 2015. [Online]. Available:
https://github.com/apple/swift/blob/main/docs/DependencyAnalysis.md

[7] S. Pestov, “SE-0193: Cross-module inlining and specialization,” 2018. [Online].
Available: https://github.com/apple/swift-evolution/blob/main/proposals/
0193-cross-module-inlining-and-specialization.md

[8] J. Rose and B. Cohen, “SE-0260: Library evolution for stable ABIs,” 2019.
[Online]. Available: https://github.com/apple/swift-evolution/blob/main/
proposals/0260-library-evolution.md

[9] J. McCall and D. Gregor, “SE-0296: Async/await,” 2020. [Online]. Available:
https:
//github.com/apple/swift-evolution/blob/main/proposals/0296-async-await.md

[10] D. Gregor, “SE-0021: Naming functions with argument labels,” 2016. [Online].
Available: https://github.com/apple/swift-evolution/blob/main/proposals/
0021-generalized-naming.md

211

https://github.com/apple/swift-evolution/blob/main/proposals/0281-main-attribute.md
https://github.com/apple/swift-evolution/blob/main/proposals/0281-main-attribute.md
https://github.com/apple/swift/blob/main/docs/SIL.rst
https://github.com/apple/swift-evolution/blob/main/proposals/0077-operator-precedence.md
https://github.com/apple/swift-evolution/blob/main/proposals/0077-operator-precedence.md
https://github.com/apple/swift-evolution/blob/main/proposals/0091-improving-operators-in-protocols.md
https://github.com/apple/swift-evolution/blob/main/proposals/0091-improving-operators-in-protocols.md
https://github.com/apple/swift/blob/main/docs/RequestEvaluator.md
https://github.com/apple/swift/blob/main/docs/DependencyAnalysis.md
https://github.com/apple/swift-evolution/blob/main/proposals/0193-cross-module-inlining-and-specialization.md
https://github.com/apple/swift-evolution/blob/main/proposals/0193-cross-module-inlining-and-specialization.md
https://github.com/apple/swift-evolution/blob/main/proposals/0260-library-evolution.md
https://github.com/apple/swift-evolution/blob/main/proposals/0260-library-evolution.md
https://github.com/apple/swift-evolution/blob/main/proposals/0296-async-await.md
https://github.com/apple/swift-evolution/blob/main/proposals/0296-async-await.md
https://github.com/apple/swift-evolution/blob/main/proposals/0021-generalized-naming.md
https://github.com/apple/swift-evolution/blob/main/proposals/0021-generalized-naming.md

Bibliography

[11] A. Zheng, “SE-0111: Remove type system significance of function argument
labels,” 2016. [Online]. Available: https://github.com/apple/swift-evolution/blob/
main/proposals/0111-remove-arg-label-type-significance.md

[12] C. Lattner, “SE-0029: Remove implicit tuple splat behavior from function
applications,” 2016. [Online]. Available: https://github.com/apple/
swift-evolution/blob/main/proposals/0029-remove-implicit-tuple-splat.md

[13] ——, “SE-0066: Standardize function type argument syntax to require
parentheses,” 2016. [Online]. Available: https://github.com/apple/
swift-evolution/blob/main/proposals/0066-standardize-function-type-syntax.md

[14] V. S. and A. Zheng, “SE-0110: Distinguish between single-tuple and
multiple-argument function types,” 2016. [Online]. Available: https://github.com/
apple/swift-evolution/blob/main/proposals/0110-distinguish-single-tuple-arg.md

[15] P. Yaskevich, H. Borla, and S. Pestov, “SE-0346: Lightweight same-type
requirements for primary associated types,” 2022. [Online]. Available:
https://github.com/apple/swift-evolution/blob/main/proposals/
0346-light-weight-same-type-syntax.md

[16] H. Borla, “SE-0335: Introduce existential any,” 2021. [Online]. Available: https://
github.com/apple/swift-evolution/blob/main/proposals/0335-existential-any.md

[17] F. Kellison-Linn, “SE-0315: Type placeholders,” 2021. [Online]. Available:
https://github.com/apple/swift-evolution/blob/main/proposals/
0315-placeholder-types.md

[18] C. Lattner, “SE-0048: Generic type aliases,” 2016. [Online]. Available:
https://github.com/apple/swift-evolution/blob/main/proposals/
0048-generic-typealias.md

[19] C. Eidhof, “SE-0148: Generic subscripts,” 2017. [Online]. Available:
https://github.com/apple/swift-evolution/blob/main/proposals/
0148-generic-subscripts.md

[20] D. Hart and A. Zheng, “SE-0156: Class and subtype existentials,” 2017. [Online].
Available: https://github.com/apple/swift-evolution/blob/main/proposals/
0156-subclass-existentials.md

[21] D. Hart, R. Widman, and P. Jahkola, “SE-0081: Move where clause to end of
declaration,” 2016. [Online]. Available: https://github.com/apple/swift-evolution/
blob/main/proposals/0081-move-where-expression.md

212

https://github.com/apple/swift-evolution/blob/main/proposals/0111-remove-arg-label-type-significance.md
https://github.com/apple/swift-evolution/blob/main/proposals/0111-remove-arg-label-type-significance.md
https://github.com/apple/swift-evolution/blob/main/proposals/0029-remove-implicit-tuple-splat.md
https://github.com/apple/swift-evolution/blob/main/proposals/0029-remove-implicit-tuple-splat.md
https://github.com/apple/swift-evolution/blob/main/proposals/0066-standardize-function-type-syntax.md
https://github.com/apple/swift-evolution/blob/main/proposals/0066-standardize-function-type-syntax.md
https://github.com/apple/swift-evolution/blob/main/proposals/0110-distinguish-single-tuple-arg.md
https://github.com/apple/swift-evolution/blob/main/proposals/0110-distinguish-single-tuple-arg.md
https://github.com/apple/swift-evolution/blob/main/proposals/0346-light-weight-same-type-syntax.md
https://github.com/apple/swift-evolution/blob/main/proposals/0346-light-weight-same-type-syntax.md
https://github.com/apple/swift-evolution/blob/main/proposals/0335-existential-any.md
https://github.com/apple/swift-evolution/blob/main/proposals/0335-existential-any.md
https://github.com/apple/swift-evolution/blob/main/proposals/0315-placeholder-types.md
https://github.com/apple/swift-evolution/blob/main/proposals/0315-placeholder-types.md
https://github.com/apple/swift-evolution/blob/main/proposals/0048-generic-typealias.md
https://github.com/apple/swift-evolution/blob/main/proposals/0048-generic-typealias.md
https://github.com/apple/swift-evolution/blob/main/proposals/0148-generic-subscripts.md
https://github.com/apple/swift-evolution/blob/main/proposals/0148-generic-subscripts.md
https://github.com/apple/swift-evolution/blob/main/proposals/0156-subclass-existentials.md
https://github.com/apple/swift-evolution/blob/main/proposals/0156-subclass-existentials.md
https://github.com/apple/swift-evolution/blob/main/proposals/0081-move-where-expression.md
https://github.com/apple/swift-evolution/blob/main/proposals/0081-move-where-expression.md

Bibliography

[22] A. Latsis, “SE-0261: where clauses on contextually generic declarations,” 2019.
[Online]. Available: https://github.com/apple/swift-evolution/blob/main/
proposals/0267-where-on-contextually-generic.md

[23] D. Gregor, “SE-0341: Opaque parameter declarations,” 2022. [Online]. Available:
https://github.com/apple/swift-evolution/blob/main/proposals/
0341-opaque-parameters.md

[24] D. Hart, J. Bandes-Storch, and D. Gregor, “SE-0142: Permit where clauses to
constrain associated types,” 2017. [Online]. Available: https://github.com/apple/
swift-evolution/blob/main/proposals/0142-associated-types-constraints.md

[25] D. Gregor, E. Sadun, and A. Zheng, “SE-0157: Support recursive constraints on
associated types,” 2017. [Online]. Available: https://github.com/apple/
swift-evolution/blob/main/proposals/0157-recursive-protocol-constraints.md

213

https://github.com/apple/swift-evolution/blob/main/proposals/0267-where-on-contextually-generic.md
https://github.com/apple/swift-evolution/blob/main/proposals/0267-where-on-contextually-generic.md
https://github.com/apple/swift-evolution/blob/main/proposals/0341-opaque-parameters.md
https://github.com/apple/swift-evolution/blob/main/proposals/0341-opaque-parameters.md
https://github.com/apple/swift-evolution/blob/main/proposals/0142-associated-types-constraints.md
https://github.com/apple/swift-evolution/blob/main/proposals/0142-associated-types-constraints.md
https://github.com/apple/swift-evolution/blob/main/proposals/0157-recursive-protocol-constraints.md
https://github.com/apple/swift-evolution/blob/main/proposals/0157-recursive-protocol-constraints.md

Index

abstract conformance, 25, 145, 153,
165, 176

accessor declaration, 84

action, 155, 163

active request, 41

Any, 92

AnyObject, 62, 92, 121

AnyObject lookup, 34, 36

archetype type, 13, 62, 144, 165

areReducedTypeParametersEqual(),
122

argument label, 59, 84

array sugared type, 65

assembly language, 32

associated conformance, 24, 171, 176

associated conformance requirement,
112

associated type, 22

associated type declaration, 80, 99, 105,
109, 163

associated type inference, 161

associated type order, 114

associative operation, 142

AST lowering request, 38, 44

ASTPrinter, 48

autoclosure function type, 59, 84

batch mode, 29

binary module, 46

bound dependent member type, 61,
114, 166

bridging header, 47

built-in module, 66

built-in type, 65

C++, 27

canonical conformance, 155

canonical equality, 57

canonical generic signature, 107, 126

canonical SIL, 31

canonical substitution map, 133

canonical type, 56

category, 143

circular inheritance, 41

Clang file unit, 46

ClangImporter, 47

class declaration, 77, 79

class type, 92

class-constrained protocol, 101, 119

closure expression, 59, 78, 84

coherence, 156

commutative diagram, 155, 164, 166

compiler intrinsic, 65

concrete conformance, 153, 176

concrete metatype type, 61

conformance, 20, 129, 153

conformance checking, 110, 161

conformance lookup callback, 145, 152

conformance lookup table, 154, 175

conformance requirement, 19, 95, 112,
119, 136, 143, 171

conformance substitution map, 154,
159, 160, 163, 164, 177

conforming type, 176

constrained extension, 136

constrained protocol type, 62

215

INDEX

constraint requirement representation,
94

constraint solver arena, 67

constraint type, 62, 92

constructor declaration, 81, 88

context substitution map, 17, 133, 145,
146, 150, 182

contextual type, 62, 179

declaration context, 52, 78, 89, 91, 102,
123, 135, 150, 154

declaration kind, 85

declared interface type, 17, 77, 79, 87,
133, 154, 158

default argument expression, 84

dependency file, 43

dependency sink, 44, 50

dependency source, 44, 50

dependent member type, 22, 61, 114,
128, 166

depth, 92, 97, 103

destructor declaration, 82

dictionary sugared type, 65

direct lookup, 33, 136

directed graph, 117

dynamic cast, 156

dynamic lookup, 34, 36

dynamic Self type, 63

empty generic signature, 109, 135

empty substitution map, 135, 150

enum declaration, 77, 79

equivalence class, 116

equivalence class graph, 117

error type, 68

evaluation function, 38

exhaustive switch, 72, 85

existential metatype type, 63

existential type, 63

expression, 47, 85

extended type, 154

extension declaration, 77, 153, 154

file unit, 46, 89
framework, 29
frontend flag, 32, 41
frontend job, 29
fully-concrete type, 132, 135
function declaration, 12, 78, 80, 88
function type, 58

generic context, 91, 102, 107, 123, 146
generic declaration, 91, 102
generic environment, 179
generic function type, 12, 60, 80
generic nominal type, 17, 57
generic parameter declaration, 12, 78,

80, 92, 103, 161
generic parameter list, 12, 91, 102
generic parameter order, 113, 128
generic parameter type, 12, 61, 103, 114
generic requirement, 19
generic signature, 12, 19, 107, 123, 152,

154, 165
generic signature equality, 107, 124
generic signature query, 119, 125
generic signature request, 38
get substitution map, 143, 151
getConcreteType(), 121
getLayoutConstraint(), 121
getReducedType(), 122
getRequiredProtocols(), 121
getSuperclassBound(), 121
global conformance lookup, 21, 145,

155, 175, 181
global conformance lookup functor, 145,

152
global variable declaration, 79

Haskell, 148

identifier, 12
identifier type representation, 22

216

INDEX

identity substitution map, 134, 145, 152

import declaration, 46

imported module, 47, 54

incremental build, 30, 43

index, 92, 97, 103

infinite descending chain, 118

inheritance clause, 92, 99, 100, 107,
109, 110, 153

inherited conformance, 153

initial value expression, 82

initializer declaration context, 78

initializer interface type, 82

inlinable attribute, 47, 48

inlinable function, 16, 47, 48

input generic signature, 129, 139, 150,
160

instance type, 61

interface type, 12, 62, 77, 87, 127, 130

interface type request, 38

invalid conformance, 153

IRGen, 31, 56

isConcreteType(), 119

isReducedType(), 122

isValidTypeParameter(), 119

Java, 27

l-value type, 68, 82

layout constraint, 92

layout requirement, 95, 121

library evolution, 47

linear order, 112, 118

linear transformation, 142

Lisp, 32

LLVM, 31

local conformance, 154, 175

local conformance lookup, 145, 167

local conformance lookup functor, 145,
152

local context, 146

local declaration context, 78

local function declaration, 79
local requirements, 180
local type declaration, 79, 146
local variable declaration, 79

main function, 29
main module, 46
main source file, 29, 54
make abstract conformance functor,

145, 152
mangled name, 112
member reference expression, 135
metadata access function, 16, 18
metatype type, 17, 61, 77
method declaration, 79
method self parameter, 80
module declaration, 46, 53, 78, 156, 175
module lookup, 33
morphism, 143
multi-parameter type class, 148

name lookup, 12
nested type declaration, 79, 146
nominal type, 57
nominal type declaration, 77, 87, 153
nominal type deeclaration, 175
non-escaping function type, 58
normal conformance, 20, 153, 158, 177

object type, 68
Objective-C, 34, 36
opaque generic environment, 180
opaque parameter, 19, 91, 97, 107
opened generic environment, 180
operator lookup, 34, 36
operator symbol, 34
optional sugared type, 65
original type, 130
output generic signature, 132, 139, 160,

164

parameter declaration, 83

217

INDEX

parameterized protocol type, 62, 92, 98

parent type, 57, 133

parsed generic parameter list, 91, 97,
102

parser, 31

partial order, 34, 112

pattern, 82

pattern binding declaration, 82

pattern binding entry, 82

placeholder type, 66

pointer equality, 57

precedence group, 34

primary archetype type, 13, 183

primary associated type, 98

primary file, 30, 36, 53, 54

primary generic environment, 180, 183

protocol composition type, 62, 92

protocol conformance, 176

protocol declaration, 77, 79, 98, 105,
127, 155

protocol inheritance, 100

protocol order, 114, 128

protocol Self type, 91, 98, 103, 109, 138,
147, 148

protocol substitution map, 138, 143,
163, 170

protocol type, 62, 92

protocol type alias, 110, 127

qualified lookup, 20, 33, 52, 135, 181

qualified lookup request, 38

query substitution map functor, 144,
151

query type map functor, 144, 151

raw SIL, 31

recursive conformance, 101

reduced equality, 57

reduced type, 57, 62, 116, 122, 124, 179

reference storage type, 66

replacement type, 129

replacement type callback, 144, 151
request, 38
request cycle, 41
request evaluator, 38, 51
requirement, 92, 94, 107, 119, 126
requirement representation, 94, 104
requirement signature, 24, 109, 127, 171
requiresClass(), 119
requiresProtocol(), 119, 165
resilience, 47
retroactive conformance, 157
root associated type, 113
runtime type metadata, 147
Rust, 27

s-expression, 32, 69
same-type requirement, 95, 98, 116
same-type requirement representation,

94
scope tree, 33, 54
secondary file, 30, 36, 54
self conformance, 153
self interface type, 77, 80, 87
Sema, 31
sequence expression, 34
serialized AST file unit, 46
serialized module, 46, 54
serialized SIL, 47
shared library, 29
shortlex order, 114
SIL mandatory pass, 31
SIL optimizer, 31
SIL performance pass, 31
SILGen, 31, 56, 58, 59, 63, 68, 132
single file mode, 29
source file, 46, 78
source location, 33
source range, 33
specialized conformance, 153, 158, 177
specialized type, 133, 153, 158
statement, 47, 85

218

INDEX

storage declaration, 82, 88
stored property declaration, 17, 79
struct declaration, 17, 77, 79
structural components, 56
structural type, 16, 58
subscript declaration, 78, 84
substituted type, 130
substitution failure, 132
substitution map, 129, 150, 167, 171
substitution map composition, 139, 150,

160
substitution map equality, 133
sugared type, 56, 65, 92, 123
superclass requirement, 95, 121
Swift driver, 29
Swift frontend, 29
Swift package manager, 29
symbol mangling, 112
synthesized declaration, 32, 48, 85, 161

TBD, 32
textual interface, 32, 47, 54
top-level code declaration, 29, 77
top-level declaration, 54
top-level function declaration, 79
top-level lookup, 33, 52
top-level type declaration, 79
tuple pattern, 83
tuple splat, 59
tuple type, 58
type, 12, 55
type alias declaration, 80, 88, 161
type alias type, 65
type declaration, 77, 87, 128
type kind, 72

type parameter, 23, 62, 127, 144

type parameter length, 114

type parameter order, 112, 128

type representation, 12, 55, 85

type resolution, 12, 55

type substitution, 56, 130, 149, 166

type variable type, 67, 144

type witness, 23, 161, 163, 176

type-check source file request, 38, 44, 53

typed pattern, 83

unbound dependent member type, 61,
114

unbound generic type, 66

underlying type, 67

unowned reference type, 66

unqualified lookup, 33, 52

unqualified lookup request, 38

value declaration, 77, 87

value ownership kind, 84

value requirement, 154, 161

value requirements, 96

value witness, 154

variable declaration, 78, 82

vector space, 142

visitor pattern, 72, 85

weak reference type, 66

well-founded order, 118

where clause, 19, 94, 99, 104, 107, 109

whole module optimization, 29

witness table, 20, 112

Xcode, 29

219

	Nuts and Bolts
	Introduction
	Generic Functions
	Generic Types
	Protocols
	Language Comparison

	Compilation Model
	Name Lookup
	Delayed Parsing
	Request Evaluator
	Incremental Builds
	Module System
	Source Code Reference

	Types
	Structural Types
	Abstract Types
	Sugared Types
	Built-in Types
	Miscellaneous Types
	Source Code Reference

	Declarations
	Type Declarations
	Function Declarations
	Storage Declarations
	Source Code Reference

	Generic Declarations
	Constraint Types
	Requirements
	Opaque Parameters
	Protocol Declarations
	Source Code Reference

	Generic Signatures
	Requirement Signatures
	Type Parameter Order
	Reduced Types
	Generic Signature Queries
	Source Code Reference

	Substitution Maps
	Context Substitution Maps
	Composing Substitution Maps
	Building Substitution Maps
	Nested Nominal Types
	Source Code Reference

	Conformances
	Conformance Lookup
	Conformance Substitution
	Type Witnesses
	Abstract Conformances
	Associated Conformances
	Source Code Reference

	Generic Environments
	Primary Archetypes
	Source Code Reference

	Odds and Ends
	Type Resolution
	Identifier Type Representations
	Checking Generic Arguments
	Protocol Type Aliases
	Source Code Reference

	Building Generic Signatures
	Requirement Inference
	Desugared Requirements
	Minimal Requirements
	Source Code Reference

	Extensions
	Constrained Extensions
	Conditional Conformances
	Source Code Reference

	Conformance Paths
	Recursive Conformances

	Opaque Return Types
	Opaque Archetypes
	Referencing Opaque Archetypes

	Existential Types
	Opened Existentials
	Self-Conforming Protocols

	Class Inheritance
	Inherited Conformances
	Override Checking

	Witness Thunks

	The Requirement Machine
	Property Map
	Bibliography
	Index

